
OPEN TRACE FORMAT 2
USER MANUAL
2.3-rc2 (revision v2.3-rc2)

Thu Mar 4 2021 09:18:23

OTF2 LICENSE AGREEMENT

COPYRIGHT ©2009-2012,
RWTH Aachen University, Germany

COPYRIGHT ©2009-2012,
Gesellschaft für numerische Simulation mbH, Germany

COPYRIGHT ©2009-2021,
Technische Universität Dresden, Germany

COPYRIGHT ©2009-2012,
University of Oregon, Eugene, USA

COPYRIGHT ©2009-2021,
Forschungszentrum Jülich GmbH, Germany

COPYRIGHT ©2009-2014,
German Research School for Simulation Sciences GmbH, Germany

COPYRIGHT ©2009-2013,
Technische Universität München, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following condi-
tions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.

* Neither the names of
RWTH Aachen University,
Gesellschaft für numerische Simulation mbH Braunschweig,
Technische Universität Dresden,
University of Oregon, Eugene,
Forschungszentrum Jülich GmbH,
German Research School for Simulation Sciences GmbH, or the
Technische Universität München,
nor the names of their contributors may be used to endorse or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

b

Page

Contents i

1 Open Trace Format 2 1

1.1 Introduction . 1

1.2 Get started . 1

Appendix A OTF2 INSTALL 5

Appendix B Deprecated List 15

Appendix C Module Documentation 17

C.1 OTF2 usage examples . 17

C.2 OTF2 records . 18

C.2.1 Detailed Description . 18

C.3 OTF2 callbacks . 19

C.4 Usage of OTF2 tools . 20

C.4.1 Detailed Description . 20

C.5 OTF2 config tool . 21

C.6 OTF2 print tool . 22

C.7 OTF2 snapshots tool . 23

C.8 OTF2 marker tool . 24

C.9 OTF2 estimator tool . 25

C.10 OTF2 I/O recording . 26

C.11 List of all definition records . 28

C.12 ClockProperties . 28

C.13 Paradigm . 29

C.14 ParadigmProperty . 29

C.15 IoParadigm . 30

C.16 MappingTable . 30

C.17 ClockOffset . 31

C.18 String . 31

C.19 Attribute . 32

C.20 SystemTreeNode . 32

C.21 LocationGroup . 33

C.22 Location . 34

C.23 Region . 35

C.24 Callsite . 36

C.25 Callpath . 36

C.26 Group . 37

C.27 MetricMember . 37

C.28 Metric . 38

C.29 MetricClass . 38

i

C.30 MetricInstance . 39

C.31 Comm . 40

C.32 Parameter . 40

C.33 RmaWin . 40

C.34 MetricClassRecorder . 41

C.35 SystemTreeNodeProperty . 41

C.36 SystemTreeNodeDomain . 42

C.37 LocationGroupProperty . 42

C.38 LocationProperty . 43

C.39 CartDimension . 43

C.40 CartTopology . 44

C.41 CartCoordinate . 44

C.42 SourceCodeLocation . 45

C.43 CallingContext . 46

C.44 CallingContextProperty . 47

C.45 InterruptGenerator . 48

C.46 IoFileProperty . 49

C.47 IoFile . 49

C.48 IoRegularFile . 50

C.49 IoDirectory . 50

C.50 IoHandle . 51

C.51 IoPreCreatedHandleState . 51

C.52 CallpathParameter . 52

C.53 List of all event records . 53

C.54 BufferFlush . 53

C.55 MeasurementOnOff . 53

C.56 Enter . 53

C.57 Leave . 54

C.58 MpiSend . 54

C.59 MpiIsend . 55

C.60 MpiIsendComplete . 56

C.61 MpiIrecvRequest . 57

C.62 MpiRecv . 57

C.63 MpiIrecv . 58

C.64 MpiRequestTest . 59

C.65 MpiRequestCancelled . 60

C.66 MpiCollectiveBegin . 60

C.67 MpiCollectiveEnd . 61

C.68 OmpFork . 62

C.69 OmpJoin . 63

C.70 OmpAcquireLock . 63

C.71 OmpReleaseLock . 64

ii

C.72 OmpTaskCreate . 65

C.73 OmpTaskSwitch . 65

C.74 OmpTaskComplete . 66

C.75 Metric . 66

C.76 ParameterString . 67

C.77 ParameterInt . 67

C.78 ParameterUnsignedInt . 68

C.79 RmaWinCreate . 68

C.80 RmaWinDestroy . 69

C.81 RmaCollectiveBegin . 69

C.82 RmaCollectiveEnd . 70

C.83 RmaGroupSync . 70

C.84 RmaRequestLock . 71

C.85 RmaAcquireLock . 72

C.86 RmaTryLock . 72

C.87 RmaReleaseLock . 73

C.88 RmaSync . 73

C.89 RmaWaitChange . 74

C.90 RmaPut . 74

C.91 RmaGet . 75

C.92 RmaAtomic . 75

C.93 RmaOpCompleteBlocking . 76

C.94 RmaOpCompleteNonBlocking . 77

C.95 RmaOpTest . 78

C.96 RmaOpCompleteRemote . 78

C.97 ThreadFork . 79

C.98 ThreadJoin . 79

C.99 ThreadTeamBegin . 80

C.100 ThreadTeamEnd . 80

C.101 ThreadAcquireLock . 81

C.102 ThreadReleaseLock . 81

C.103 ThreadTaskCreate . 82

C.104 ThreadTaskSwitch . 82

C.105 ThreadTaskComplete . 83

C.106 ThreadCreate . 83

C.107 ThreadBegin . 84

C.108 ThreadWait . 84

C.109 ThreadEnd . 85

C.110 CallingContextEnter . 86

C.111 CallingContextLeave . 86

C.112 CallingContextSample . 87

C.113 IoCreateHandle . 88

iii

C.114 IoDestroyHandle . 88

C.115 IoDuplicateHandle . 89

C.116 IoSeek . 90

C.117 IoChangeStatusFlags . 91

C.118 IoDeleteFile . 91

C.119 IoOperationBegin . 92

C.120 IoOperationTest . 93

C.121 IoOperationIssued . 93

C.122 IoOperationComplete . 94

C.123 IoOperationCancelled . 95

C.124 IoAcquireLock . 95

C.125 IoReleaseLock . 96

C.126 IoTryLock . 96

C.127 ProgramBegin . 97

C.128 ProgramEnd . 98

C.129 List of all marker records . 99

C.130 DefMarker . 99

C.131 Marker . 99

C.132 List of all snapshot records . 100

C.133 SnapshotStart . 100

C.134 SnapshotEnd . 100

C.135 MeasurementOnOffSnap . 101

C.136 EnterSnap . 101

C.137 MpiSendSnap . 102

C.138 MpiIsendSnap . 103

C.139 MpiIsendCompleteSnap . 103

C.140 MpiRecvSnap . 104

C.141 MpiIrecvRequestSnap . 105

C.142 MpiIrecvSnap . 105

C.143 MpiCollectiveBeginSnap . 106

C.144 MpiCollectiveEndSnap . 107

C.145 OmpForkSnap . 108

C.146 OmpAcquireLockSnap . 109

C.147 OmpTaskCreateSnap . 109

C.148 OmpTaskSwitchSnap . 110

C.149 MetricSnap . 111

C.150 ParameterStringSnap . 111

C.151 ParameterIntSnap . 112

C.152 ParameterUnsignedIntSnap . 113

Appendix Index 115

iv

Chapter 1

Open Trace Format 2

1.1 Introduction

The OTF2 library provides an interface to write and read trace data.

OTF2 is developed within the Score-P project. The Score-P project is funded by the German Federal Ministry of
Education and Research. OTF2 is available under the BSD open source license that allows free usage for academic
and commercial applications.

1.2 Get started

OTF2 records

Usage of OTF2 tools

CHAPTER 1. OPEN TRACE FORMAT 2

2

Appendices

Appendix A

OTF2 INSTALL

For generic installation instructions see below.
When building for an Intel MIC platform, carefully follow the
platform-specific instructions below.

Configuration of OTF2

‘configure’ configures OTF2 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:
-h, --help display this help and exit

--help=short display options specific to this package
--help=recursive display the short help of all the included packages

-V, --version display version information and exit
-q, --quiet, --silent do not print ‘checking ...’ messages

--cache-file=FILE cache test results in FILE [disabled]
-C, --config-cache alias for ‘--cache-file=config.cache’
-n, --no-create do not create output files

--srcdir=DIR find the sources in DIR [configure dir or ‘..’]

Installation directories:
--prefix=PREFIX install architecture-independent files in PREFIX

[/opt/otf2]
--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX

[PREFIX]

By default, ‘make install’ will install all the files in
‘/opt/otf2/bin’, ‘/opt/otf2/lib’ etc. You can specify
an installation prefix other than ‘/opt/otf2’ using ‘--prefix’,
for instance ‘--prefix=$HOME’.

For better control, use the options below.

Fine tuning of the installation directories:
--bindir=DIR user executables [EPREFIX/bin]
--sbindir=DIR system admin executables [EPREFIX/sbin]
--libexecdir=DIR program executables [EPREFIX/libexec]
--sysconfdir=DIR read-only single-machine data [PREFIX/etc]
--sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com]
--localstatedir=DIR modifiable single-machine data [PREFIX/var]
--libdir=DIR object code libraries [EPREFIX/lib]
--includedir=DIR C header files [PREFIX/include]
--oldincludedir=DIR C header files for non-gcc [/usr/include]
--datarootdir=DIR read-only arch.-independent data root [PREFIX/share]
--datadir=DIR read-only architecture-independent data [DATAROOTDIR]

APPENDIX A. OTF2 INSTALL

--infodir=DIR info documentation [DATAROOTDIR/info]
--localedir=DIR locale-dependent data [DATAROOTDIR/locale]
--mandir=DIR man documentation [DATAROOTDIR/man]
--docdir=DIR documentation root [DATAROOTDIR/doc/otf2]
--htmldir=DIR html documentation [DOCDIR]
--dvidir=DIR dvi documentation [DOCDIR]
--pdfdir=DIR pdf documentation [DOCDIR]
--psdir=DIR ps documentation [DOCDIR]

Program names:
--program-prefix=PREFIX prepend PREFIX to installed program names
--program-suffix=SUFFIX append SUFFIX to installed program names
--program-transform-name=PROGRAM run sed PROGRAM on installed program names

System types:
--build=BUILD configure for building on BUILD [guessed]
--host=HOST cross-compile to build programs to run on HOST [BUILD]

Optional Features:
--disable-option-checking ignore unrecognized --enable/--with options
--disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)
--enable-FEATURE[=ARG] include FEATURE [ARG=yes]
--enable-silent-rules less verbose build output (undo: ‘make V=1’)
--disable-silent-rules verbose build output (undo: ‘make V=0’)
--disable-dependency-tracking speeds up one-time build
--enable-dependency-tracking do not reject slow dependency extractors
--enable-platform-mic Force build for Intel Xeon Phi co-processors

[no]. This option is only needed for Xeon
Phi co-processors, like the Knights Corner
(KNC). It is not needed for self-hosted Xeon
Phis, like the Knights Landing (KNL); for these
chips no special treatment is required.

--enable-debug activate internal debug output [no]
--enable-backend-test-runs

Run tests at make check [no]. If disabled, tests are
still build at make check. Additionally, scripts
(scorep_*tests.sh) containing the tests are
generated in <builddir>/build-backend.

--enable-shared[=PKGS] build shared libraries [default=no]
--enable-static[=PKGS] build static libraries [default=yes]
--enable-fast-install[=PKGS]

optimize for fast installation [default=yes]
--disable-libtool-lock avoid locking (might break parallel builds)

Optional Packages:
--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]
--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)
--with-sionlib[=<sionlib-bindir>]

Use an already installed sionlib. Provide path to
sionconfig. Auto-detected if already in $PATH.

--with-pic try to use only PIC/non-PIC objects [default=use
both]

--with-gnu-ld assume the C compiler uses GNU ld [default=no]
--with-sysroot=DIR Search for dependent libraries within DIR

(or the compiler’s sysroot if not specified).

Some influential environment variables:
CC_FOR_BUILD

C compiler command for the frontend build
CXX_FOR_BUILD

C++ compiler command for the frontend build
F77_FOR_BUILD

Fortran 77 compiler command for the frontend build
FC_FOR_BUILD

Fortran compiler command for the frontend build
CPPFLAGS_FOR_BUILD

(Objective) C/C++ preprocessor flags for the frontend build,
e.g. -I<include dir> if you have headers in a nonstandard
directory <include dir>

CFLAGS_FOR_BUILD
C compiler flags for the frontend build

CXXFLAGS_FOR_BUILD
C++ compiler flags for the frontend build

6

FFLAGS_FOR_BUILD
Fortran 77 compiler flags for the frontend build

FCFLAGS_FOR_BUILD
Fortran compiler flags for the frontend build

LDFLAGS_FOR_BUILD
linker flags for the frontend build, e.g. -L<lib dir> if you
have libraries in a nonstandard directory <lib dir>

LIBS_FOR_BUILD
libraries to pass to the linker for the frontend build, e.g.
-l<library>

CC C compiler command
CFLAGS C compiler flags
LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a

nonstandard directory <lib dir>
LIBS libraries to pass to the linker, e.g. -l<library>
CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I<include dir> if

you have headers in a nonstandard directory <include dir>
CXX C++ compiler command
CXXFLAGS C++ compiler flags
CPP C preprocessor
CXXCPP C++ preprocessor
PYTHON The Python interpreter to be used for the Python bindings. Use

PYTHON=: to disable Python support.
PYTHON_FOR_GENERATOR

The Python interpreter used for the generator. Not a build
requirement, only needed for developing. Python version 2.5 or
above, but no support for Python 3. Use PYTHON_FOR_GENERATOR=:
to disable Python support.

Use these variables to override the choices made by ‘configure’ or to help
it to find libraries and programs with nonstandard names/locations.

Please report bugs to <support@score-p.org>.

Platform-specific instructions

Intel Xeon Phi (aka. MIC) co-processors

[Note: The following instructions only apply to Intel Xeon Phi
co-processors, like the Knights Corner (KNC). They do not apply to
self-hosted Xeon Phis, like the Knights Landing (KNL); for these
chips no special treatment is required.]

Building OTF2 for Intel Xeon Phi co-processors requires some extra care,
and in some cases two installations into the same location. Therefore, we
strongly recommend to strictly follow the procedure as described below.

1. Ensure that Intel compilers are installed and available in $PATH, and
that the Intel Manycore Platform Software Stack (MPSS) is installed.

2. Configure OTF2 to use the MIC platform:

./configure --enable-platform-mic [other options, e.g., ’--prefix’]

3. Build and install:

make; make install

On non-cross compiling systems (e.g., typical Linux clusters), that’s it.
On cross-compiling systems (e.g., Cray XC30 with Xeon Phi daughter board), a
second installation of OTF2 *on top* of the just installed one is required to
provide a single installation serving login nodes, compute nodes, and MIC:

4. Remove MIC program binaries, object files, and configure-generated files
from the source code directory:

make distclean

5. Reconfigure for login/compute nodes using *identical directory options*
(e.g., ’--prefix’ or ’--bindir’) as in step 2:

7

APPENDIX A. OTF2 INSTALL

./configure [other options as used in step 2]

This will automatically detect the already existing native MIC build and
enable the required support in the login node tools.

6. Build and install:

make; make install

Note that this approach also works with VPATH builds (even with two
separate build directories) as long as the same options defining directory
locations are passed in steps 2 and 5.

Python bindings

1. Requirements:
+ python 2.7 or later or
+ python 3.5 or later
+ Earlier versions will probably work, but are not currently tested.
+ Required packages are "six" (>= 1.4.0) and "future" (providing the "builtins" module)
+ sphinx to build the python documentation
+ Ubuntu package names: python python-future python-six python-sphinx

Installation Instructions

Copyright (C) 1994, 1995, 1996, 1999, 2000, 2001, 2002, 2004, 2005,
2006, 2007, 2008, 2009 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without warranty of any kind.

Basic Installation
==================

Briefly, the shell commands ‘./configure; make; make install’ should
configure, build, and install this package. The following
more-detailed instructions are generic; see the ‘README’ file for
instructions specific to this package. Some packages provide this
‘INSTALL’ file but do not implement all of the features documented
below. The lack of an optional feature in a given package is not
necessarily a bug. More recommendations for GNU packages can be found
in *note Makefile Conventions: (standards)Makefile Conventions.

The ‘configure’ shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a ‘Makefile’ in each directory of the package.
It may also create one or more ‘.h’ files containing system-dependent
definitions. Finally, it creates a shell script ‘config.status’ that
you can run in the future to recreate the current configuration, and a
file ‘config.log’ containing compiler output (useful mainly for
debugging ‘configure’).

It can also use an optional file (typically called ‘config.cache’
and enabled with ‘--cache-file=config.cache’ or simply ‘-C’) that saves
the results of its tests to speed up reconfiguring. Caching is
disabled by default to prevent problems with accidental use of stale
cache files.

If you need to do unusual things to compile the package, please try
to figure out how ‘configure’ could check whether to do them, and mail
diffs or instructions to the address given in the ‘README’ so they can
be considered for the next release. If you are using the cache, and at
some point ‘config.cache’ contains results you don’t want to keep, you
may remove or edit it.

The file ‘configure.ac’ (or ‘configure.in’) is used to create
‘configure’ by a program called ‘autoconf’. You need ‘configure.ac’ if

8

you want to change it or regenerate ‘configure’ using a newer version
of ‘autoconf’.

The simplest way to compile this package is:

1. ‘cd’ to the directory containing the package’s source code and type
‘./configure’ to configure the package for your system.

Running ‘configure’ might take a while. While running, it prints
some messages telling which features it is checking for.

2. Type ‘make’ to compile the package.

3. Optionally, type ‘make check’ to run any self-tests that come with
the package, generally using the just-built uninstalled binaries.

4. Type ‘make install’ to install the programs and any data files and
documentation. When installing into a prefix owned by root, it is
recommended that the package be configured and built as a regular
user, and only the ‘make install’ phase executed with root
privileges.

5. Optionally, type ‘make installcheck’ to repeat any self-tests, but
this time using the binaries in their final installed location.
This target does not install anything. Running this target as a
regular user, particularly if the prior ‘make install’ required
root privileges, verifies that the installation completed
correctly.

6. You can remove the program binaries and object files from the
source code directory by typing ‘make clean’. To also remove the
files that ‘configure’ created (so you can compile the package for
a different kind of computer), type ‘make distclean’. There is
also a ‘make maintainer-clean’ target, but that is intended mainly
for the package’s developers. If you use it, you may have to get
all sorts of other programs in order to regenerate files that came
with the distribution.

7. Often, you can also type ‘make uninstall’ to remove the installed
files again. In practice, not all packages have tested that
uninstallation works correctly, even though it is required by the
GNU Coding Standards.

8. Some packages, particularly those that use Automake, provide ‘make
distcheck’, which can by used by developers to test that all other
targets like ‘make install’ and ‘make uninstall’ work correctly.
This target is generally not run by end users.

Compilers and Options
=====================

Some systems require unusual options for compilation or linking that
the ‘configure’ script does not know about. Run ‘./configure --help’
for details on some of the pertinent environment variables.

You can give ‘configure’ initial values for configuration parameters
by setting variables in the command line or in the environment. Here
is an example:

./configure CC=c99 CFLAGS=-g LIBS=-lposix

*Note Defining Variables::, for more details.

Compiling For Multiple Architectures
====================================

You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their
own directory. To do this, you can use GNU ‘make’. ‘cd’ to the
directory where you want the object files and executables to go and run
the ‘configure’ script. ‘configure’ automatically checks for the
source code in the directory that ‘configure’ is in and in ‘..’. This
is known as a "VPATH" build.

9

APPENDIX A. OTF2 INSTALL

With a non-GNU ‘make’, it is safer to compile the package for one
architecture at a time in the source code directory. After you have
installed the package for one architecture, use ‘make distclean’ before
reconfiguring for another architecture.

On MacOS X 10.5 and later systems, you can create libraries and
executables that work on multiple system types--known as "fat" or
"universal" binaries--by specifying multiple ‘-arch’ options to the
compiler but only a single ‘-arch’ option to the preprocessor. Like
this:

./configure CC="gcc -arch i386 -arch x86_64 -arch ppc -arch ppc64" \
CXX="g++ -arch i386 -arch x86_64 -arch ppc -arch ppc64" \
CPP="gcc -E" CXXCPP="g++ -E"

This is not guaranteed to produce working output in all cases, you
may have to build one architecture at a time and combine the results
using the ‘lipo’ tool if you have problems.

Installation Names
==================

By default, ‘make install’ installs the package’s commands under
‘/usr/local/bin’, include files under ‘/usr/local/include’, etc. You
can specify an installation prefix other than ‘/usr/local’ by giving
‘configure’ the option ‘--prefix=PREFIX’, where PREFIX must be an
absolute file name.

You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
pass the option ‘--exec-prefix=PREFIX’ to ‘configure’, the package uses
PREFIX as the prefix for installing programs and libraries.
Documentation and other data files still use the regular prefix.

In addition, if you use an unusual directory layout you can give
options like ‘--bindir=DIR’ to specify different values for particular
kinds of files. Run ‘configure --help’ for a list of the directories
you can set and what kinds of files go in them. In general, the
default for these options is expressed in terms of ‘${prefix}’, so that
specifying just ‘--prefix’ will affect all of the other directory
specifications that were not explicitly provided.

The most portable way to affect installation locations is to pass the
correct locations to ‘configure’; however, many packages provide one or
both of the following shortcuts of passing variable assignments to the
‘make install’ command line to change installation locations without
having to reconfigure or recompile.

The first method involves providing an override variable for each
affected directory. For example, ‘make install
prefix=/alternate/directory’ will choose an alternate location for all
directory configuration variables that were expressed in terms of
‘${prefix}’. Any directories that were specified during ‘configure’,
but not in terms of ‘${prefix}’, must each be overridden at install
time for the entire installation to be relocated. The approach of
makefile variable overrides for each directory variable is required by
the GNU Coding Standards, and ideally causes no recompilation.
However, some platforms have known limitations with the semantics of
shared libraries that end up requiring recompilation when using this
method, particularly noticeable in packages that use GNU Libtool.

The second method involves providing the ‘DESTDIR’ variable. For
example, ‘make install DESTDIR=/alternate/directory’ will prepend
‘/alternate/directory’ before all installation names. The approach of
‘DESTDIR’ overrides is not required by the GNU Coding Standards, and
does not work on platforms that have drive letters. On the other hand,
it does better at avoiding recompilation issues, and works well even
when some directory options were not specified in terms of ‘${prefix}’
at ‘configure’ time.

Optional Features
=================

10

If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving ‘configure’ the
option ‘--program-prefix=PREFIX’ or ‘--program-suffix=SUFFIX’.

Some packages pay attention to ‘--enable-FEATURE’ options to
‘configure’, where FEATURE indicates an optional part of the package.
They may also pay attention to ‘--with-PACKAGE’ options, where PACKAGE
is something like ‘gnu-as’ or ‘x’ (for the X Window System). The
‘README’ should mention any ‘--enable-’ and ‘--with-’ options that the
package recognizes.

For packages that use the X Window System, ‘configure’ can usually
find the X include and library files automatically, but if it doesn’t,
you can use the ‘configure’ options ‘--x-includes=DIR’ and
‘--x-libraries=DIR’ to specify their locations.

Some packages offer the ability to configure how verbose the
execution of ‘make’ will be. For these packages, running ‘./configure
--enable-silent-rules’ sets the default to minimal output, which can be
overridden with ‘make V=1’; while running ‘./configure
--disable-silent-rules’ sets the default to verbose, which can be
overridden with ‘make V=0’.

Particular systems
==================

On HP-UX, the default C compiler is not ANSI C compatible. If GNU
CC is not installed, it is recommended to use the following options in
order to use an ANSI C compiler:

./configure CC="cc -Ae -D_XOPEN_SOURCE=500"

and if that doesn’t work, install pre-built binaries of GCC for HP-UX.

On OSF/1 a.k.a. Tru64, some versions of the default C compiler cannot
parse its ‘<wchar.h>’ header file. The option ‘-nodtk’ can be used as
a workaround. If GNU CC is not installed, it is therefore recommended
to try

./configure CC="cc"

and if that doesn’t work, try

./configure CC="cc -nodtk"

On Solaris, don’t put ‘/usr/ucb’ early in your ‘PATH’. This
directory contains several dysfunctional programs; working variants of
these programs are available in ‘/usr/bin’. So, if you need ‘/usr/ucb’
in your ‘PATH’, put it _after_ ‘/usr/bin’.

On Haiku, software installed for all users goes in ‘/boot/common’,
not ‘/usr/local’. It is recommended to use the following options:

./configure --prefix=/boot/common

Specifying the System Type
==========================

There may be some features ‘configure’ cannot figure out
automatically, but needs to determine by the type of machine the package
will run on. Usually, assuming the package is built to be run on the
same architectures, ‘configure’ can figure that out, but if it prints
a message saying it cannot guess the machine type, give it the
‘--build=TYPE’ option. TYPE can either be a short name for the system
type, such as ‘sun4’, or a canonical name which has the form:

CPU-COMPANY-SYSTEM

where SYSTEM can have one of these forms:

OS
KERNEL-OS

11

APPENDIX A. OTF2 INSTALL

See the file ‘config.sub’ for the possible values of each field. If
‘config.sub’ isn’t included in this package, then this package doesn’t
need to know the machine type.

If you are _building_ compiler tools for cross-compiling, you should
use the option ‘--target=TYPE’ to select the type of system they will
produce code for.

If you want to _use_ a cross compiler, that generates code for a
platform different from the build platform, you should specify the
"host" platform (i.e., that on which the generated programs will
eventually be run) with ‘--host=TYPE’.

Sharing Defaults
================

If you want to set default values for ‘configure’ scripts to share,
you can create a site shell script called ‘config.site’ that gives
default values for variables like ‘CC’, ‘cache_file’, and ‘prefix’.
‘configure’ looks for ‘PREFIX/share/config.site’ if it exists, then
‘PREFIX/etc/config.site’ if it exists. Or, you can set the
‘CONFIG_SITE’ environment variable to the location of the site script.
A warning: not all ‘configure’ scripts look for a site script.

Defining Variables
==================

Variables not defined in a site shell script can be set in the
environment passed to ‘configure’. However, some packages may run
configure again during the build, and the customized values of these
variables may be lost. In order to avoid this problem, you should set
them in the ‘configure’ command line, using ‘VAR=value’. For example:

./configure CC=/usr/local2/bin/gcc

causes the specified ‘gcc’ to be used as the C compiler (unless it is
overridden in the site shell script).

Unfortunately, this technique does not work for ‘CONFIG_SHELL’ due to
an Autoconf bug. Until the bug is fixed you can use this workaround:

CONFIG_SHELL=/bin/bash /bin/bash ./configure CONFIG_SHELL=/bin/bash

‘configure’ Invocation
======================

‘configure’ recognizes the following options to control how it
operates.

‘--help’
‘-h’

Print a summary of all of the options to ‘configure’, and exit.

‘--help=short’
‘--help=recursive’

Print a summary of the options unique to this package’s
‘configure’, and exit. The ‘short’ variant lists options used
only in the top level, while the ‘recursive’ variant lists options
also present in any nested packages.

‘--version’
‘-V’

Print the version of Autoconf used to generate the ‘configure’
script, and exit.

‘--cache-file=FILE’
Enable the cache: use and save the results of the tests in FILE,
traditionally ‘config.cache’. FILE defaults to ‘/dev/null’ to
disable caching.

‘--config-cache’
‘-C’

12

Alias for ‘--cache-file=config.cache’.

‘--quiet’
‘--silent’
‘-q’

Do not print messages saying which checks are being made. To
suppress all normal output, redirect it to ‘/dev/null’ (any error
messages will still be shown).

‘--srcdir=DIR’
Look for the package’s source code in directory DIR. Usually
‘configure’ can determine that directory automatically.

‘--prefix=DIR’
Use DIR as the installation prefix. *note Installation Names::
for more details, including other options available for fine-tuning
the installation locations.

‘--no-create’
‘-n’

Run the configure checks, but stop before creating any output
files.

‘configure’ also accepts some other, not widely useful, options. Run
‘configure --help’ for more details.

13

APPENDIX A. OTF2 INSTALL

14

Appendix B

Deprecated List

Module records_definition

In version 2.0

Module records_event

In version 1.2

In version 1.2

In version 1.2

In version 1.2

In version 1.2

In version 1.2

In version 1.2

APPENDIX B. DEPRECATED LIST

16

Appendix C

Module Documentation

C.1 OTF2 usage examples

Listing of example code.

APPENDIX C. MODULE DOCUMENTATION

C.2 OTF2 records

Modules

• List of all definition records
• List of all event records
• List of all marker records
• List of all snapshot records

C.2.1 Detailed Description

Listings of all OTF2 records.

18

C.3 OTF2 callbacks

C.3 OTF2 callbacks

Description of the non-records callbacks available in OTF2.

19

APPENDIX C. MODULE DOCUMENTATION

C.4 Usage of OTF2 tools

Modules

• OTF2 config tool
• OTF2 print tool
• OTF2 snapshots tool
• OTF2 marker tool
• OTF2 estimator tool

C.4.1 Detailed Description

Usage instructions of the OTF2 command line tools.

20

C.5 OTF2 config tool

C.5 OTF2 config tool

A call to otf2-config has the following syntax:

Usage: otf2-config [OPTION]... COMMAND

Commands:
--cflags prints additional compiler flags. They already contain

the include flags
--cppflags prints the include flags for the OTF2 headers
--libs prints the required libraries for linking
--ldflags prints the required linker flags
--cc prints the C compiler name
--features <FEATURE-CATEGORY>

prints available features selected by <FEATURE-CATEGORY>.
Available feature categories:

* substrates

* compressions

* targets
--help prints this usage information

--version prints the version number of the OTF2 package and
--revision prints the revision number of the OTF2 package
--interface-version

prints the interface version number
--pythonpath

prints the python path for the OTF2 modules

Options:
--target <TARGET>

displays the requested information for the given <TARGET>.
On non-cross compiling systems, the ’backend’ target is ignored.

--backend equivalent to ’--target backend’ (deprecated)
--cuda specifies that the required flags are for the CUDA compiler

nvcc (deprecated)

21

APPENDIX C. MODULE DOCUMENTATION

C.6 OTF2 print tool

A call to oft2-print has the following syntax:

Usage: otf2-print [OPTION]... [--] ANCHORFILE
Print selected content of the OTF2 archive specified by ANCHORFILE.

Options:
-A, --show-all print all output including definitions and anchor

file
-G, --show-global-defs print all global definitions
-I, --show-info print information from the anchor file
-T, --show-thumbnails print the headers from all thumbnails
-M, --show-mappings print mappings to global definitions
-C, --show-clock-offsets

print clock offsets to global timer
--timestamps=<FORMAT>

format of the timestamps. <FORMAT> is one of:
plain - no formatting is done (default)
offset - timestamps are relative to the global offset

(taken form the ClockProperties definition)
-L, --location <LID> limit output to location <LID>
-s, --step <N> step through output by steps of <N> events

--time <MIN> <MAX> limit output to events within time interval
--system-tree output system tree to dot-file
--silent only validate trace and do not print any events
--unwind-calling-context

unwind the calling context for each calling context
event. Each calling context node is prefixed depending
on the unwind distance of the current event:
’?’ - unwind distance is undefined
’+’ - region was newly entered
’*’ - region was not left
’ ’ - region did not made any progress

-Werror, --warnings-as-errors
all warnings are treated as errors

-d, --debug turn on debug mode
-V, --version print version information
-h, --help print this help information

22

C.7 OTF2 snapshots tool

C.7 OTF2 snapshots tool

A call to oft2-snapshots has the following syntax:

Usage: otf2-snapshots [OPTION]... ANCHORFILE
Append snapshots to existing otf2 traces at given ’break’ timestamps.

Options:
-n, --number <BREAKS> Number of breaks (distributed regularly)

if -p and -t are not set, the default for -n is 10
breaks.

-p <TICK_RATE> Create break every <TICK_RATE> ticks
if both, -n and -p are specified the one producing
more breaks wins.

--progress Brief mode, print progress information.
--verbose Verbose mode, print break timestamps, i.e. snapshot

informations to stdout.
-V, --version Print version information.
-h, --help Print this help information.

23

APPENDIX C. MODULE DOCUMENTATION

C.8 OTF2 marker tool

A call to oft2-marker has the following syntax:

Usage: otf2-marker [OPTION] [ARGUMENTS]... ANCHORFILE
Read or edit a marker file.

Options:
Print all markers sorted by group.

--def <GROUP> [<CATEGORY>]
Print all marker definitions of group <GROUP> or of
category <CATEGORY> from group <GROUP>.

--defs-only Print only marker definitions.
--add-def <GROUP> <CATEGORY> <SEVERITY>

Add a new marker definition.
--add <GROUP> <CATEGORY> <TIME> <SCOPE> <TEXT>

Add a marker to an existing definition.
--remove-def <GROUP> [<CATEGORY>]

Remove all marker classes of group <GROUP> or only the
category <CATEGORY> of group <GROUP>; and all according
markers.

--clear-def <GROUP> [<CATEGORY>]
Remove all markers of group <GROUP> or only of category
<CATEGORY> of group <GROUP>.

--reset Reset all marker.
-V, --version Print version information.
-h, --help Print this help information.

Argument descriptions:
<GROUP>, <CATEGORY>, <TEXT>

Arbitrary strings.
<SEVERITY> One of:

* NONE

* LOW

* MEDIUM

* HIGH
<TIME> One of the following formats:

* <TIMESTAMP>
A valid timestamp inside the trace range
’global offset’ and ’global offset’ + ’trace
length’.

* <TIMESTAMP>+<DURATION>
<TIMESTAMP> and <TIMESTAMP> + <DURATION> must be valid
timestamps inside the trace range ’global
offset’ and ’global offset’ + ’trace length’.

* <TIMESTAMP-START>-<TIMESTAMP-END>
Two valid timestamps inside the trace range ’global
offset’ and ’global offset’ + ’trace length’, with
<TIMESTAMP-START> <= <TIMESTAMP-END>.

See the CLOCK_PROPERTIES definition with the help
of the ’otf2-print -G’ tool.

<SCOPE>[:<SCOPE-REF>]
The <SCOPE> must be one of:

* GLOBAL

* LOCATION:<LOCATION-REF>

* LOCATION_GROUP:<LOCATION-GROUP-REF>

* SYSTEM_TREE_NODE:<SYSTEM-TREE-NODE-REF>

* GROUP:<GROUP-REF>

* COMM:<COMMUNICATOR-REF>
<SCOPE-REF> must be a valid definition reference of
the specified scope. Use ’otf2-print -G’ for a list of
defined references.
There is no <SCOPE-REF> for <SCOPE> ’GLOBAL’.
For a scope ’GROUP’ the type of the referenced
group must be ’OTF2_GROUP_TYPE_LOCATIONS’ or
’OTF2_GROUP_TYPE_COMM_LOCATIONS’.

24

C.9 OTF2 estimator tool

C.9 OTF2 estimator tool

A call to oft2-estimator has the following syntax:

Usage: otf2-estimator [OPTION]...
This tool estimates the size of OTF2 events.
It will open a prompt to type in commands.

Options:
-V, --version Print version information.
-h, --help Print this help information.

Commands:
list definitions Lists all known definition names.
list events Lists all known event names.
list types Lists all known type names.
set <DEFINITION> <NUMBER> Specifies the number of definitions of a

type of definitions.
get DefChunkSize Prints the estimated definition chunk size.
get Timestamp Prints the size of a timestamp.
get AttributeList [TYPES...] Prints the estimated size for an attribute

list with the given number of entries and
types.

get <EVENT> [ARGS...] Prints the estimated size of records for
<EVENT>.

exit Exits the tool.

This tool provides a command line interface to the estimator API of the OTF2
library. It is based on a stream based protocol. Commands are send to the
standard input stream of the program and the result is written to the standard
output stream of the program. All definition and event names are in there
canonical CamelCase form. Numbers are printed in decimal. The TYPES are in
ALL_CAPS. See the output of the appropriate ’list’ commands. Arguments are
separated with an arbitrary number of white space. The ’get’ commands are using
everything after the first white space separator verbatim as a key, which is
then printed in the output line and appended with the estimated size.

Here is a simple example. We have at most 4 region definitions and one metric
definition. We want to know the size of a timestamp, enter, and leave event,
and a metric event with 4 values.

cat <<EOC | otf2-estimator
set Region 4
set Metric 1
get Timestamp
get Enter
get Leave
get Metric 4
exit
EOC
Timestamp 9
Enter 3
Leave 3
Metric 4 44

25

APPENDIX C. MODULE DOCUMENTATION

C.10 OTF2 I/O recording

C.10.0.1 Known OTF2 I/O paradigms

The introduction of I/O recording with OTF2 made it necessary to distinguish different I/O paradigms. Like it is done
with the parallel paradigms, like MPI, OpenMP. Though instead of the usual enum used to identify the paradigm, the
I/O paradigms are expressed in a dynamic way with the help of a definition record. While this has the advantage
that the API does not need to be changed only to add new I/O paradigms, it also lacks confidence in the definition.
To overcome this, OTF2 textually defines known I/O paradigms and their expected definition.

"POSIX" This is the I/O interface of the POSIX standard.

Required properties

Class OTF2_IO_PARADIGM_CLASS_SERIAL

Flags OTF2_IO_PARADIGM_FLAG_OS

"ISOC" This is the I/O interface of the ISO C standard.

Required properties

Class OTF2_IO_PARADIGM_CLASS_SERIAL

"MPI-IO" This is the I/O interface of the Message Passing Interface.

Required properties

Class OTF2_IO_PARADIGM_CLASS_PARALLEL

Flags OTF2_IO_PARADIGM_FLAG_NONE

"netCDF" This is the Network Common Data Form. The class depends on whether the NetCDF library was built
with or without MPI support.

Required properties

Class OTF2_IO_PARADIGM_CLASS_SERIAL or OTF2_IO_PARADIGM_CLASS_PARALLEL

Flags OTF2_IO_PARADIGM_FLAG_NONE

"PnetCDF" This is the Parallel netCDF.

Required properties

Class OTF2_IO_PARADIGM_CLASS_PARALLEL

Flags OTF2_IO_PARADIGM_FLAG_NONE

"HDF5" This is the I/O interface of The HDF Group. The class depends on whether the HDF5 library was built
with or without MPI support.

Required properties

Class OTF2_IO_PARADIGM_CLASS_SERIAL or OTF2_IO_PARADIGM_CLASS_PARALLEL

Flags OTF2_IO_PARADIGM_FLAG_NONE

"ADIOS" This is the Adaptable IO System.

Required properties

Class OTF2_IO_PARADIGM_CLASS_PARALLEL

Flags OTF2_IO_PARADIGM_FLAG_NONE

26

C.10 OTF2 I/O recording

C.10.0.2 Event order for I/O operation records

These diagrams show valid event orders of I/O operations, which also denotes the lifetime of the (IoHandle,
matchingId) tuple.

If the OTF2_IO_OPERATION_FLAG_NON_BLOCKING is not set in the IoOperationBegin record, then the event
order must follow:

IoOperationBegin IoOperationComplete

If the OTF2_IO_OPERATION_FLAG_NON_BLOCKING is set in the IoOperationBegin record, then the event order
must follow:

IoOperationBegin IoOperationIssued IoOperationTest

IoOperationComplete

IoOperationCancelled

27

APPENDIX C. MODULE DOCUMENTATION

C.11 List of all definition records

Metric

IoFile

IoParadigm

identification

name

String

Attribute

name

description

SystemTreeNode

name

className

parent

SystemTreeNodeProperty

name

SystemTreeNodeDomain

LocationGroup

name

systemTreeParent

LocationGroupProperty

name

Location

name

locationGroup

LocationProperty

name

Region

name

canonicalName

description

sourceFile

Callsite

sourceFile

enteredRegion

leftRegion

Callpath

parent

region

CallpathParameter

parameter

Parameter

name Group

name

members

Metric

MetricMember

name

description

unit

MetricClass

metricMembers

MetricClassRecorder

recorder

MetricInstance

metricClass

recorder

scope

Comm

name

group

parent

RmaWin

name

comm

CartDimension

name

CartTopology

name

communicator

cartDimensions

CartCoordinate

SourceCodeLocation

file CallingContext

region

sourceCodeLocation

parent

CallingContextProperty

name

InterruptGenerator

name

IoFile

IoRegularFile

name

scope

IoFileProperty

name

IoDirectory

name

scope

IoHandle

name

file

ioParadigm

comm

parent

IoPreCreatedHandleState

C.12 ClockProperties

Defines the timer resolution and time range of this trace. There will be no event with a timestamp less than
globalOffset, and no event with timestamp greater than (globalOffset + traceLength).

This definition is only valid as a global definition.

Attributes

uint64_t timerResolution Ticks per seconds.
uint64_t globalOffset A timestamp smaller than all event timestamps.
uint64_t traceLength A timespan which includes the timespan between the smallest and greatest

timestamp of all event timestamps.

See also

OTF2_GlobalDefWriter_WriteClockProperties()
OTF2_GlobalDefReaderCallbacks_SetClockPropertiesCallback()

Since

Version 1.0

28

C.13 Paradigm

C.13 Paradigm

Attests that the following parallel paradigm was available at the time when the trace was recorded, and vice versa.
Note that this does not attest that the paradigm was used. For convenience, this also includes a proper name for the
paradigm and a classification. This definition is only allowed to appear at most once in the definitions per Paradigm.

This definition is only valid as a global definition.

Attributes

OTF2_←↩

Paradigm
paradigm The paradigm to attest.

OTF2_←↩

StringRef
name The name of the paradigm. References a String definition.

OTF2_←↩

Paradigm←↩

Class

paradigmClass The class of this paradigm.

See also

OTF2_GlobalDefWriter_WriteParadigm()
OTF2_GlobalDefReaderCallbacks_SetParadigmCallback()

Since

Version 1.5

C.14 ParadigmProperty

Extensible annotation for the Paradigm definition.

The tuple (paradigm, property) must be unique.

This definition is only valid as a global definition.

Attributes

OTF2_←↩

Paradigm
paradigm The paradigm to annotate.

OTF2_←↩

Paradigm←↩

Property

property The property.

OTF2_←↩

Type
type The type of this property. Must match with the defined type of the property.

OTF2_←↩

Attribute←↩

Value

value The value of this property.

See also

OTF2_GlobalDefWriter_WriteParadigmProperty()
OTF2_GlobalDefReaderCallbacks_SetParadigmPropertyCallback()

Since

Version 1.5

29

APPENDIX C. MODULE DOCUMENTATION

C.15 OTF2_IoParadigmRef IoParadigm

Attests that the following I/O paradigm was available at the time when the trace was recorded, and vice versa. Note
that this does not attest that the paradigm was used. For convenience, this also includes a proper name for the
paradigm and a classification.

This definition is only valid as a global definition.

Attributes

OTF2_←↩

StringRef
identification The I/O paradigm identification. This should be used programmatically to iden-

tify a specific I/O paradigm. For a human-readable name use the name at-
tribute. If this identification matches one of the known I/O paradigms listed
in the OTF2 documentation Known OTF2 I/O paradigms, then the attributes of
this definition must match those specified there. References a String definition.

OTF2_←↩

StringRef
name The name of the I/O paradigm. This should be presented to humans as the

name of this I/O paradigm. References a String definition.
OTF2_Io←↩

Paradigm←↩

Class

ioParadigmClass The class of this I/O paradigm.

OTF2_Io←↩

Paradigm←↩

Flag

ioParadigmFlags Boolean properties of this I/O paradigm.

uint8_t numberOf←↩

Properties
Number of properties.

OTF2_Io←↩

Paradigm←↩

Property

properties [
numberOf←↩

Properties
]

The property.

OTF2_←↩

Type
types [number←↩

OfProperties
]

The type of this property. Must match with the defined type of the property.

OTF2_←↩

Attribute←↩

Value

values [
numberOf←↩

Properties
]

The value of this property.

See also

OTF2_GlobalDefWriter_WriteIoParadigm()
OTF2_GlobalDefReaderCallbacks_SetIoParadigmCallback()

Since

Version 2.1

C.16 MappingTable

Mapping tables are needed for situations where an ID is not globally known at measurement time. They are applied
automatically at reading.

This definition is only valid as a local definition.

30

C.17 ClockOffset

Attributes

OTF2_←↩

Mapping←↩

Type

mappingType Says to what type of ID the mapping table has to be applied.

const OT←↩

F2_IdMap∗
idMap Mapping table.

See also

OTF2_DefWriter_WriteMappingTable()
OTF2_DefReaderCallbacks_SetMappingTableCallback()

Since

Version 1.0

C.17 ClockOffset

Clock offsets are used for clock corrections.

This definition is only valid as a local definition.

Attributes

OTF2_←↩

Time←↩

Stamp

time Time when this offset was determined.

int64_t offset The offset to the global clock which was determined at time.
double standard←↩

Deviation
A possible standard deviation, which can be used as a metric for the quality of
the offset.

See also

OTF2_DefWriter_WriteClockOffset()
OTF2_DefReaderCallbacks_SetClockOffsetCallback()

Since

Version 1.0

C.18 OTF2_StringRef String

The string definition.

31

APPENDIX C. MODULE DOCUMENTATION

Attributes

const
char∗

string The string, null terminated.

See also

OTF2_GlobalDefWriter_WriteString()
OTF2_GlobalDefReaderCallbacks_SetStringCallback()
OTF2_DefWriter_WriteString()
OTF2_DefReaderCallbacks_SetStringCallback()

Since

Version 1.0

C.19 OTF2_AttributeRef Attribute

The attribute definition.

Attributes

OTF2_←↩

StringRef
name Name of the attribute. References a String definition.

OTF2_←↩

StringRef
description Description of the attribute. References a String definition. Since version 1.4.

OTF2_←↩

Type
type Type of the attribute value.

See also

OTF2_GlobalDefWriter_WriteAttribute()
OTF2_GlobalDefReaderCallbacks_SetAttributeCallback()
OTF2_DefWriter_WriteAttribute()
OTF2_DefReaderCallbacks_SetAttributeCallback()

Since

Version 1.0

C.20 OTF2_SystemTreeNodeRef SystemTreeNode

The system tree node definition.

32

C.21 LocationGroup

Attributes

OTF2_←↩

StringRef
name Free form instance name of this node. References a String definition.

OTF2_←↩

StringRef
className Free form class name of this node References a String definition.

OTF2_←↩

System←↩

Tree←↩

NodeRef

parent Parent id of this node. May be OTF2_UNDEFINED_SYSTEM_TREE_NODE
to indicate that there is no parent. References a SystemTreeNode definition.

Supplements

SystemTreeNodeProperty
SystemTreeNodeDomain

See also

OTF2_GlobalDefWriter_WriteSystemTreeNode()
OTF2_GlobalDefReaderCallbacks_SetSystemTreeNodeCallback()
OTF2_DefWriter_WriteSystemTreeNode()
OTF2_DefReaderCallbacks_SetSystemTreeNodeCallback()

Since

Version 1.0

C.21 OTF2_LocationGroupRef LocationGroup

The location group definition.

Attributes

OTF2_←↩

StringRef
name Name of the group. References a String definition.

OTF2_←↩

Location←↩

GroupType

locationGroup←↩

Type
Type of this group.

OTF2_←↩

System←↩

Tree←↩

NodeRef

systemTree←↩

Parent
Parent of this location group in the system tree. References a SystemTree←↩

Node definition.

Supplements

LocationGroupProperty

See also

OTF2_GlobalDefWriter_WriteLocationGroup()
OTF2_GlobalDefReaderCallbacks_SetLocationGroupCallback()
OTF2_DefWriter_WriteLocationGroup()
OTF2_DefReaderCallbacks_SetLocationGroupCallback()

Since

Version 1.0

33

APPENDIX C. MODULE DOCUMENTATION

C.22 OTF2_LocationRef Location

The location definition.

34

C.23 Region

Attributes

OTF2_←↩

StringRef
name Name of the location References a String definition.

OTF2_←↩

Location←↩

Type

locationType Location type.

uint64_t numberOfEvents Number of events this location has recorded.
OTF2_←↩

Location←↩

GroupRef

locationGroup Location group which includes this location. References a LocationGroup def-
inition.

Supplements

LocationProperty

See also

OTF2_GlobalDefWriter_WriteLocation()
OTF2_GlobalDefReaderCallbacks_SetLocationCallback()
OTF2_DefWriter_WriteLocation()
OTF2_DefReaderCallbacks_SetLocationCallback()

Since

Version 1.0

C.23 OTF2_RegionRef Region

The region definition.

Attributes

OTF2_←↩

StringRef
name Name of the region (demangled name if available). References a String defi-

nition.
OTF2_←↩

StringRef
canonicalName Alternative name of the region (e.g. mangled name). References a String

definition. Since version 1.1.
OTF2_←↩

StringRef
description A more detailed description of this region. References a String definition.

OTF2_←↩

Region←↩

Role

regionRole Region role. Since version 1.1.

OTF2_←↩

Paradigm
paradigm Paradigm. Since version 1.1.

OTF2_←↩

Region←↩

Flag

regionFlags Region flags. Since version 1.1.

35

APPENDIX C. MODULE DOCUMENTATION

OTF2_←↩

StringRef
sourceFile The source file where this region was declared. References a String definition.

uint32_t beginLine←↩

Number
Starting line number of this region in the source file.

uint32_t endLineNumber Ending line number of this region in the source file.

See also

OTF2_GlobalDefWriter_WriteRegion()
OTF2_GlobalDefReaderCallbacks_SetRegionCallback()
OTF2_DefWriter_WriteRegion()
OTF2_DefReaderCallbacks_SetRegionCallback()

Since

Version 1.0

C.24 OTF2_CallsiteRef Callsite

The callsite definition.

Attributes

OTF2_←↩

StringRef
sourceFile The source file where this call was made. References a String definition.

uint32_t lineNumber Line number in the source file where this call was made.
OTF2_←↩

RegionRef
enteredRegion The region which was called. References a Region definition.

OTF2_←↩

RegionRef
leftRegion The region which made the call. References a Region definition.

See also

OTF2_GlobalDefWriter_WriteCallsite()
OTF2_GlobalDefReaderCallbacks_SetCallsiteCallback()
OTF2_DefWriter_WriteCallsite()
OTF2_DefReaderCallbacks_SetCallsiteCallback()

Since

Version 1.0

Deprecated In version 2.0

C.25 OTF2_CallpathRef Callpath

The callpath definition.

36

C.26 Group

Attributes

OTF2_←↩

Callpath←↩

Ref

parent The parent of this callpath. References a Callpath definition.

OTF2_←↩

RegionRef
region The region of this callpath. References a Region definition.

Supplements

CallpathParameter

See also

OTF2_GlobalDefWriter_WriteCallpath()
OTF2_GlobalDefReaderCallbacks_SetCallpathCallback()
OTF2_DefWriter_WriteCallpath()
OTF2_DefReaderCallbacks_SetCallpathCallback()

Since

Version 1.0

C.26 OTF2_GroupRef Group

The group definition.

Attributes

OTF2_←↩

StringRef
name Name of this group References a String definition.

OTF2_←↩

GroupType
groupType The type of this group. Since version 1.2.

OTF2_←↩

Paradigm
paradigm The paradigm of this communication group. Since version 1.2.

OTF2_←↩

GroupFlag
groupFlags Flags for this group. Since version 1.2.

uint32_t numberOf←↩

Members
The number of members in this group.

uint32_t members [
numberOf←↩

Members
]

The identifiers of the group members.

See also

OTF2_GlobalDefWriter_WriteGroup()
OTF2_GlobalDefReaderCallbacks_SetGroupCallback()
OTF2_DefWriter_WriteGroup()
OTF2_DefReaderCallbacks_SetGroupCallback()

Since

Version 1.0

37

APPENDIX C. MODULE DOCUMENTATION

C.27 OTF2_MetricMemberRef MetricMember

A metric is defined by a metric member definition. A metric member is always a member of a metric class. Therefore,
a single metric is a special case of a metric class with only one member. It is not allowed to reference a metric
member id in a metric event, but only metric class IDs.

Attributes

OTF2_←↩

StringRef
name Name of the metric. References a String definition.

OTF2_←↩

StringRef
description Description of the metric. References a String definition.

OTF2_←↩

MetricType
metricType Metric type: PAPI, etc.

OTF2_←↩

Metric←↩

Mode

metricMode Metric mode: accumulative, fix, relative, etc.

OTF2_←↩

Type
valueType Type of the value. Only OTF2_TYPE_INT64, OTF2_TYPE_UINT64, and O←↩

TF2_TYPE_DOUBLE are valid types. If this metric member is recorded in a
Metric event, than this type and the type in the event must match.

OTF2_←↩

Base
base The recorded values should be handled in this given base, either binary or

decimal. This information can be used if the value needs to be scaled.
int64_t exponent The values inside the Metric events should be scaled by the factor

base∧exponent, to get the value in its base unit. For example, if the metric
values come in as KiBi, than the base should be OTF2_BASE_BINARY and
the exponent 10. Than the writer does not need to scale the values up to bytes,
but can directly write the KiBi values into the Metric event. At reading time, the
reader can apply the scaling factor to get the value in its base unit, ie. in bytes.

OTF2_←↩

StringRef
unit Unit of the metric. This needs to be the scale free base unit, ie. "bytes",

"operations", or "seconds". In particular this unit should not have any scale
prefix. References a String definition.

See also

OTF2_GlobalDefWriter_WriteMetricMember()
OTF2_GlobalDefReaderCallbacks_SetMetricMemberCallback()
OTF2_DefWriter_WriteMetricMember()
OTF2_DefReaderCallbacks_SetMetricMemberCallback()

Since

Version 1.0

C.28 OTF2_MetricRef Metric

This is a polymorphic definition class.

Derivations

MetricClass
MetricInstance

C.29 OTF2_MetricRef MetricClass

For a metric class it is implicitly given that the event stream that records the metric is also the scope. A metric class
can contain multiple different metrics.

38

C.30 MetricInstance

Attributes

uint8_t numberOf←↩

Metrics
Number of metrics within the set.

OTF2_←↩

Metric←↩

Member←↩

Ref

metricMembers [
numberOf←↩

Metrics
]

List of metric members. References a MetricMember definition.

OTF2_←↩

Metric←↩

Occurrence

metric←↩

Occurrence
Defines occurrence of a metric set.

OTF2_←↩

Recorder←↩

Kind

recorderKind What kind of locations will record this metric class, or will this metric class only
be recorded by metric instances. Since version 1.2.

Supplements

MetricClassRecorder

See also

OTF2_GlobalDefWriter_WriteMetricClass()
OTF2_GlobalDefReaderCallbacks_SetMetricClassCallback()
OTF2_DefWriter_WriteMetricClass()
OTF2_DefReaderCallbacks_SetMetricClassCallback()

Since

Version 1.0

C.30 OTF2_MetricRef MetricInstance

A metric instance is used to define metrics that are recorded at one location for multiple locations or for another
location. The occurrence of a metric instance is implicitly of type OTF2_METRIC_ASYNCHRONOUS.

Attributes

OTF2_←↩

MetricRef
metricClass The instanced MetricClass. This metric class must be of kind OTF2_REC←↩

ORDER_KIND_ABSTRACT. References a MetricClass, or a MetricInstance
definition.

OTF2_←↩

Location←↩

Ref

recorder Recorder of the metric: location ID. References a Location definition.

OTF2_←↩

Metric←↩

Scope

metricScope Defines type of scope: location, location group, system tree node, or a generic
group of locations.

39

APPENDIX C. MODULE DOCUMENTATION

uint64_t scope Scope of metric: ID of a location, location group, system tree node, or a generic
group of locations.

See also

OTF2_GlobalDefWriter_WriteMetricInstance()
OTF2_GlobalDefReaderCallbacks_SetMetricInstanceCallback()
OTF2_DefWriter_WriteMetricInstance()
OTF2_DefReaderCallbacks_SetMetricInstanceCallback()

Since

Version 1.0

C.31 OTF2_CommRef Comm

The communicator definition.

Attributes

OTF2_←↩

StringRef
name The name given by calling MPI_Comm_set_name on this communicator. Or

the empty name to indicate that no name was given. References a String
definition.

OTF2_←↩

GroupRef
group The describing MPI group of this MPI communicator

The group needs to be of type OTF2_GROUP_TYPE_COMM_GROUP or O←↩

TF2_GROUP_TYPE_COMM_SELF. References a Group definition.
OTF2_←↩

CommRef
parent The parent MPI communicator from which this communicator was created, if

any. Use OTF2_UNDEFINED_COMM to indicate no parent. References a
Comm definition.

See also

OTF2_GlobalDefWriter_WriteComm()
OTF2_GlobalDefReaderCallbacks_SetCommCallback()
OTF2_DefWriter_WriteComm()
OTF2_DefReaderCallbacks_SetCommCallback()

Since

Version 1.0

C.32 OTF2_ParameterRef Parameter

The parameter definition.

40

C.33 RmaWin

Attributes

OTF2_←↩

StringRef
name Name of the parameter (variable name etc.) References a String definition.

OTF2_←↩

Parameter←↩

Type

parameterType Type of the parameter, OTF2_ParameterType for possible types.

See also

OTF2_GlobalDefWriter_WriteParameter()
OTF2_GlobalDefReaderCallbacks_SetParameterCallback()
OTF2_DefWriter_WriteParameter()
OTF2_DefReaderCallbacks_SetParameterCallback()

Since

Version 1.0

C.33 OTF2_RmaWinRef RmaWin

A window defines the communication context for any remote-memory access operation.

Attributes

OTF2_←↩

StringRef
name Name, e.g. 'GASPI Queue 1', 'NVidia Card 2', etc.. References a String defi-

nition.
OTF2_←↩

CommRef
comm Communicator object used to create the window. References a Comm defini-

tion.

See also

OTF2_GlobalDefWriter_WriteRmaWin()
OTF2_GlobalDefReaderCallbacks_SetRmaWinCallback()
OTF2_DefWriter_WriteRmaWin()
OTF2_DefReaderCallbacks_SetRmaWinCallback()

Since

Version 1.2

C.34 MetricClassRecorder

The metric class recorder definition.

41

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

MetricRef
metric Parent MetricClass, or MetricInstance definition to which this one is a supple-

mentary definition. References a MetricClass, or a MetricInstance definition.
OTF2_←↩

Location←↩

Ref

recorder The location which recorded the referenced metric class. References a Loca-
tion definition.

See also

OTF2_GlobalDefWriter_WriteMetricClassRecorder()
OTF2_GlobalDefReaderCallbacks_SetMetricClassRecorderCallback()
OTF2_DefWriter_WriteMetricClassRecorder()
OTF2_DefReaderCallbacks_SetMetricClassRecorderCallback()

Since

Version 1.2

C.35 SystemTreeNodeProperty

An arbitrary key/value property for a SystemTreeNode definition.

Attributes

OTF2_←↩

System←↩

Tree←↩

NodeRef

systemTreeNode Parent SystemTreeNode definition to which this one is a supplementary defi-
nition. References a SystemTreeNode definition.

OTF2_←↩

StringRef
name Name of the property. References a String definition.

OTF2_←↩

Type
type The type of this property. Since version 2.0.

OTF2_←↩

Attribute←↩

Value

value The value of this property. Since version 2.0.

See also

OTF2_GlobalDefWriter_WriteSystemTreeNodeProperty()
OTF2_GlobalDefReaderCallbacks_SetSystemTreeNodePropertyCallback()
OTF2_DefWriter_WriteSystemTreeNodeProperty()
OTF2_DefReaderCallbacks_SetSystemTreeNodePropertyCallback()

Since

Version 1.2

C.36 SystemTreeNodeDomain

The system tree node domain definition.

42

C.37 LocationGroupProperty

Attributes

OTF2_←↩

System←↩

Tree←↩

NodeRef

systemTreeNode Parent SystemTreeNode definition to which this one is a supplementary defi-
nition. References a SystemTreeNode definition.

OTF2_←↩

System←↩

Tree←↩

Domain

systemTree←↩

Domain
The domain in which the referenced SystemTreeNode operates in.

See also

OTF2_GlobalDefWriter_WriteSystemTreeNodeDomain()
OTF2_GlobalDefReaderCallbacks_SetSystemTreeNodeDomainCallback()
OTF2_DefWriter_WriteSystemTreeNodeDomain()
OTF2_DefReaderCallbacks_SetSystemTreeNodeDomainCallback()

Since

Version 1.2

C.37 LocationGroupProperty

An arbitrary key/value property for a LocationGroup definition.

Attributes

OTF2_←↩

Location←↩

GroupRef

locationGroup Parent LocationGroup definition to which this one is a supplementary defini-
tion. References a LocationGroup definition.

OTF2_←↩

StringRef
name Name of the property. References a String definition.

OTF2_←↩

Type
type The type of this property. Since version 2.0.

OTF2_←↩

Attribute←↩

Value

value The value of this property. Since version 2.0.

See also

OTF2_GlobalDefWriter_WriteLocationGroupProperty()
OTF2_GlobalDefReaderCallbacks_SetLocationGroupPropertyCallback()
OTF2_DefWriter_WriteLocationGroupProperty()
OTF2_DefReaderCallbacks_SetLocationGroupPropertyCallback()

Since

Version 1.3

C.38 LocationProperty

An arbitrary key/value property for a Location definition.

43

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location Parent Location definition to which this one is a supplementary definition. Ref-
erences a Location definition.

OTF2_←↩

StringRef
name Name of the property. References a String definition.

OTF2_←↩

Type
type The type of this property. Since version 2.0.

OTF2_←↩

Attribute←↩

Value

value The value of this property. Since version 2.0.

See also

OTF2_GlobalDefWriter_WriteLocationProperty()
OTF2_GlobalDefReaderCallbacks_SetLocationPropertyCallback()
OTF2_DefWriter_WriteLocationProperty()
OTF2_DefReaderCallbacks_SetLocationPropertyCallback()

Since

Version 1.3

C.39 OTF2_CartDimensionRef CartDimension

Each dimension in a Cartesian topology is composed of a global id, a name, its size, and whether it is periodic or
not.

Attributes

OTF2_←↩

StringRef
name The name of the cartesian topology dimension. References a String definition.

uint32_t size The size of the cartesian topology dimension.
OTF2_←↩

Cart←↩

Periodicity

cartPeriodicity Periodicity of the cartesian topology dimension.

See also

OTF2_GlobalDefWriter_WriteCartDimension()
OTF2_GlobalDefReaderCallbacks_SetCartDimensionCallback()
OTF2_DefWriter_WriteCartDimension()
OTF2_DefReaderCallbacks_SetCartDimensionCallback()

Since

Version 1.3

C.40 OTF2_CartTopologyRef CartTopology

Each topology is described by a global id, a reference to its name, a reference to a communicator, the number
of dimensions, and references to those dimensions. The topology type is defined by the paradigm of the group
referenced by the associated communicator.

44

C.41 CartCoordinate

Attributes

OTF2_←↩

StringRef
name The name of the topology. References a String definition.

OTF2_←↩

CommRef
communicator Communicator object used to create the topology. References a Comm defini-

tion.
uint8_t numberOf←↩

Dimensions
Number of dimensions.

OTF2_←↩

Cart←↩

Dimension←↩

Ref

cartDimensions [
numberOf←↩

Dimensions
]

The dimensions of this topology. References a CartDimension definition.

Supplements

CartCoordinate

See also

OTF2_GlobalDefWriter_WriteCartTopology()
OTF2_GlobalDefReaderCallbacks_SetCartTopologyCallback()
OTF2_DefWriter_WriteCartTopology()
OTF2_DefReaderCallbacks_SetCartTopologyCallback()

Since

Version 1.3

C.41 CartCoordinate

Defines the coordinate of the location referenced by the given rank (w.r.t. the communicator associated to the
topology) in the referenced topology.

Attributes

OTF2_←↩

Cart←↩

Topology←↩

Ref

cartTopology Parent CartTopology definition to which this one is a supplementary definition.
References a CartTopology definition.

uint32_t rank The rank w.r.t. the communicator associated to the topology referencing this
coordinate.

uint8_t numberOf←↩

Dimensions
Number of dimensions.

uint8_t coordinates [
numberOf←↩

Dimensions
]

Coordinates, indexed by dimension.

See also

OTF2_GlobalDefWriter_WriteCartCoordinate()
OTF2_GlobalDefReaderCallbacks_SetCartCoordinateCallback()
OTF2_DefWriter_WriteCartCoordinate()
OTF2_DefReaderCallbacks_SetCartCoordinateCallback()

Since

Version 1.3

45

APPENDIX C. MODULE DOCUMENTATION

C.42 OTF2_SourceCodeLocationRef SourceCodeLocation

The definition of a source code location as tuple of the corresponding file name and line number.

When used to attach source code annotations to events, use the OTF2_AttributeList with a Attribute definition
named "SOURCE_CODE_LOCATION" and typed OTF2_TYPE_SOURCE_CODE_LOCATION.

Attributes

OTF2_←↩

StringRef
file The name of the file for the source code location. References a String defini-

tion.
uint32_t lineNumber The line number for the source code location.

See also

OTF2_GlobalDefWriter_WriteSourceCodeLocation()
OTF2_GlobalDefReaderCallbacks_SetSourceCodeLocationCallback()
OTF2_DefWriter_WriteSourceCodeLocation()
OTF2_DefReaderCallbacks_SetSourceCodeLocationCallback()

Since

Version 1.5

C.43 OTF2_CallingContextRef CallingContext

Defines a node in the calling context tree. These nodes are referenced in the CallingContextSample, Calling←↩

ContextEnter, and CallingContextLeave events.

The referenced CallingContext node in these events form a path which represents the calling context at this time.
This path will be partitioned into at most three sub-paths by the unwindDistance attribute. For the CallingContext←↩

Leave event, the unwindDistance is defined to be 1.

Starting from the referenced CallingContext node, the first N ≥ 0 nodes were newly entered regions since the
previous calling context event. The next node is a region which was not left but made progress since the previous
calling context event. All other nodes did not make progress at all, and thus the regions were neither left nor entered
again. The unwindDistance is then N + 1. In case the unwindDistance is 0, there are neither newly entered
regions nor regions which made progress.

It is guaranteed, that the node referenced by the unwindDistance exists in the previous and current calling context.
All descendants of this node's child in the previous calling context were left since the previous calling context event.

It is valid that this node is the OTF2_UNDEFINED_CALLING_CONTEXT node and that this node is already reached
after unwindDistance −1 steps. In the latter case, there exists no region which made progress, all regions in the
previous calling context were left and all regions in the current calling context were newly entered.

Note that for CallingContextLeave events, the parent of the referenced CallingContext must be used as the previous
calling context for the next event.

Regions which were entered with a CallingContextEnter event form an upper bound for the unwind distance, i.e.,
the unwindDistance points either to the parent of the last such entered region, or a node which is a descendant to
this parent.

To summarize, an unwindDistance of 0 means that no regions were left, newly entered, or made any progress. An
unwindDistance of 1 means that some regions were left regarding the previous calling context, no regions were
newly entered, and there was progress in the region of the first node. An unwindDistance greater than 1 means
that some regions were left regarding the previous calling context, there was progress in one region, and the first
unwindDistance −1 regions were newly entered.

46

C.44 CallingContextProperty

Attributes

OTF2_←↩

RegionRef
region The region. References a Region definition.

OTF2_←↩

Source←↩

Code←↩

Location←↩

Ref

sourceCode←↩

Location
The absolute source code location of this calling context. References a
SourceCodeLocation definition.

OTF2_←↩

Calling←↩

ContextRef

parent Parent id of this context. References a CallingContext definition.

Supplements

CallingContextProperty

See also

OTF2_GlobalDefWriter_WriteCallingContext()
OTF2_GlobalDefReaderCallbacks_SetCallingContextCallback()
OTF2_DefWriter_WriteCallingContext()
OTF2_DefReaderCallbacks_SetCallingContextCallback()

Since

Version 1.5

C.44 CallingContextProperty

An arbitrary key/value property for a CallingContext definition.

Attributes

OTF2_←↩

Calling←↩

ContextRef

callingContext Parent CallingContext definition to which this one is a supplementary definition.
References a CallingContext definition.

OTF2_←↩

StringRef
name Property name. References a String definition.

OTF2_←↩

Type
type The type of this property. Must match with the defined type of the property.

OTF2_←↩

Attribute←↩

Value

value The value of this property.

See also

OTF2_GlobalDefWriter_WriteCallingContextProperty()
OTF2_GlobalDefReaderCallbacks_SetCallingContextPropertyCallback()
OTF2_DefWriter_WriteCallingContextProperty()
OTF2_DefReaderCallbacks_SetCallingContextPropertyCallback()

Since

Version 2.0

47

APPENDIX C. MODULE DOCUMENTATION

C.45 OTF2_InterruptGeneratorRef InterruptGenerator

Defines an interrupt generator which periodically triggers CallingContextSample events. If the mode of the interrupt
generator is set to OTF2_INTERRUPT_GENERATOR_MODE_TIME, the generator produces interrupts which are
uniformly distributed over time, and the unit of the period is implicitly in seconds. If the mode is OTF2_INTERRUP←↩

T_GENERATOR_MODE_COUNT, the interrupt is triggered if a specific counter threshold is reached in the system.
Therefore these samples are unlikely to be uniformly distributed over time. The unit of the period is then implicitly a
number (threshold value).

The interrupts period in base unit (which is implicitly seconds or number, based on the mode) is derived out of the
base, the exponent, and the period attributes by this formula:

base-period = period x base∧exponent

Attributes

OTF2_←↩

StringRef
name The name of this interrupt generator. References a String definition.

OTF2_←↩

Interrupt←↩

Generator←↩

Mode

interrupt←↩

GeneratorMode
Mode of the interrupt generator.

OTF2_←↩

Base
base The base for the period calculation.

int64_t exponent The exponent for the period calculation.
uint64_t period The period this interrupt generator generates interrupts.

See also

OTF2_GlobalDefWriter_WriteInterruptGenerator()
OTF2_GlobalDefReaderCallbacks_SetInterruptGeneratorCallback()
OTF2_DefWriter_WriteInterruptGenerator()
OTF2_DefReaderCallbacks_SetInterruptGeneratorCallback()

Since

Version 1.5

C.46 IoFileProperty

Extensible annotation for the polymorphic IoFile definition class.

The tuple (ioFile, name) must be unique.

Attributes

OTF2_Io←↩

FileRef
ioFile Parent IoRegularFile definition to which this one is a supplementary definition.

References a IoRegularFile definition.
OTF2_←↩

StringRef
name Property name. References a String definition.

OTF2_←↩

Type
type The type of this property.

OTF2_←↩

Attribute←↩

Value

value The value of this property.

48

C.47 IoFile

See also

OTF2_GlobalDefWriter_WriteIoFileProperty()
OTF2_GlobalDefReaderCallbacks_SetIoFilePropertyCallback()
OTF2_DefWriter_WriteIoFileProperty()
OTF2_DefReaderCallbacks_SetIoFilePropertyCallback()

Since

Version 2.1

C.47 OTF2_IoFileRef IoFile

This is a polymorphic definition class.

Derivations

IoRegularFile
IoDirectory

C.48 OTF2_IoFileRef IoRegularFile

Defines a regular file from which an IoHandle can be created.

This definition is member of the polymorphic IoFile definition class. All definitions of this polymorphic definition class
share the same global identifier namespace.

Attributes

OTF2_←↩

StringRef
name Name of the file. References a String definition.

OTF2_←↩

System←↩

Tree←↩

NodeRef

scope Defines the physical scope of this IoRegularFile in the system tree. E.g., two
IoRegularFile definitions with the same name but different scope values are
physically different, thus I/O operations through IoHandles do not operate on
the same file. References a SystemTreeNode definition.

Supplements

IoFileProperty

See also

OTF2_GlobalDefWriter_WriteIoRegularFile()
OTF2_GlobalDefReaderCallbacks_SetIoRegularFileCallback()
OTF2_DefWriter_WriteIoRegularFile()
OTF2_DefReaderCallbacks_SetIoRegularFileCallback()

Since

Version 2.1

C.49 OTF2_IoFileRef IoDirectory

Defines a directory from which an IoHandle can be created.

This definition is member of the polymorphic IoFile definition class. All definitions of this polymorphic definition class
share the same global identifier namespace.

49

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

StringRef
name Name of the directory. References a String definition.

OTF2_←↩

System←↩

Tree←↩

NodeRef

scope Defines the physical scope of this IoDirectory in the system tree. E.g., two
IoDirectory definitions with the same name but different scope values are
physically different, thus I/O operations through IoHandles do not operate on
the same directory. References a SystemTreeNode definition.

See also

OTF2_GlobalDefWriter_WriteIoDirectory()
OTF2_GlobalDefReaderCallbacks_SetIoDirectoryCallback()
OTF2_DefWriter_WriteIoDirectory()
OTF2_DefReaderCallbacks_SetIoDirectoryCallback()

Since

Version 2.1

C.50 OTF2_IoHandleRef IoHandle

Defines an I/O handle which will be used by subsequent I/O operations. I/O operations can only be applied to active
I/O handles. An I/O handle gets active either if it was marked with the OTF2_IO_HANDLE_FLAG_PRE_CREAT←↩

ED flag, after it was referenced in an IoCreateHandle event, or it was referenced in the newHandle attribute of an
IoDuplicateHandle event. It gets inactive if it was referenced in an IoDestroyHandle event. This life cycle can be
repeated indefinitely. Though the OTF2_IO_HANDLE_FLAG_PRE_CREATED flag is unset after a IoDuplicate←↩

Handle event. All Locations of a LocationGroup have access to an active IoHandle, regardless which Location of
the LocationGroup activated the IoHandle.

Attributes

OTF2_←↩

StringRef
name Handle name. References a String definition.

OTF2_Io←↩

FileRef
file File identifier. References a IoRegularFile, or a IoDirectory definition.

OTF2_Io←↩

Paradigm←↩

Ref

ioParadigm The I/O paradigm. References a IoParadigm definition.

OTF2_Io←↩

Handle←↩

Flag

ioHandleFlags Special characteristics of this handle.

OTF2_←↩

CommRef
comm Scope of the file handle. This scope defines which process can access this

file via this handle and also defines the collective context for this handle. Ref-
erences a Comm definition.

OTF2_Io←↩

HandleRef
parent Parent, in case this I/O handle was created and operated by an higher- level

I/O paradigm. References a IoHandle definition.

Supplements

IoPreCreatedHandleState

50

C.51 IoPreCreatedHandleState

See also

OTF2_GlobalDefWriter_WriteIoHandle()
OTF2_GlobalDefReaderCallbacks_SetIoHandleCallback()
OTF2_DefWriter_WriteIoHandle()
OTF2_DefReaderCallbacks_SetIoHandleCallback()

Since

Version 2.1

C.51 IoPreCreatedHandleState

Provide the I/O access mode and status flags for pre-created IoHandles.

Only allowed once for a IoHandle definition with the OTF2_IO_HANDLE_FLAG_PRE_CREATED flag set.

Attributes

OTF2_Io←↩

HandleRef
ioHandle Parent IoHandle definition to which this one is a supplementary definition. Ref-

erences a IoHandle definition.
OTF2_Io←↩

Access←↩

Mode

mode The access mode of the pre-created IoHandle.

OTF2_Io←↩

StatusFlag
statusFlags The status flags of the pre-created IoHandle.

See also

OTF2_GlobalDefWriter_WriteIoPreCreatedHandleState()
OTF2_GlobalDefReaderCallbacks_SetIoPreCreatedHandleStateCallback()
OTF2_DefWriter_WriteIoPreCreatedHandleState()
OTF2_DefReaderCallbacks_SetIoPreCreatedHandleStateCallback()

Since

Version 2.1

C.52 CallpathParameter

A parameter for a callpath definition.

Attributes

OTF2_←↩

Callpath←↩

Ref

callpath Parent Callpath definition to which this one is a supplementary definition. Ref-
erences a Callpath definition.

OTF2_←↩

Parameter←↩

Ref

parameter The parameter of this callpath. References a Parameter definition.

OTF2_←↩

Type
type The type of the attribute value. Must match the type of the parameter.

OTF2_←↩

Attribute←↩

Value

value The value of the parameter for this callpath.

51

APPENDIX C. MODULE DOCUMENTATION

See also

OTF2_GlobalDefWriter_WriteCallpathParameter()
OTF2_GlobalDefReaderCallbacks_SetCallpathParameterCallback()
OTF2_DefWriter_WriteCallpathParameter()
OTF2_DefReaderCallbacks_SetCallpathParameterCallback()

Since

Version 2.2

52

C.53 List of all event records

C.53 List of all event records

C.54 BufferFlush

This event signals that the internal buffer was flushed at the given time.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Time←↩

Stamp

stopTime The time the buffer flush finished.

See also

OTF2_EvtWriter_BufferFlush()
OTF2_GlobalEvtReaderCallbacks_SetBufferFlushCallback()
OTF2_EvtReaderCallbacks_SetBufferFlushCallback()

Since

Version 1.0

C.55 MeasurementOnOff

This event signals where the measurement system turned measurement on or off.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Measurement←↩

Mode

measurement←↩

Mode
Is the measurement turned on (OTF2_MEASUREMENT_ON) or off (OTF2←↩

_MEASUREMENT_OFF)?

See also

OTF2_EvtWriter_MeasurementOnOff()
OTF2_GlobalEvtReaderCallbacks_SetMeasurementOnOffCallback()
OTF2_EvtReaderCallbacks_SetMeasurementOnOffCallback()

Since

Version 1.0

C.56 Enter

An enter record indicates that the program enters a code region.

53

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RegionRef
region Needs to be defined in a definition record References a Region definition and

will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_REGION is available.

See also

OTF2_EvtWriter_Enter()
OTF2_GlobalEvtReaderCallbacks_SetEnterCallback()
OTF2_EvtReaderCallbacks_SetEnterCallback()

Since

Version 1.0

C.57 Leave

A leave record indicates that the program leaves a code region.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RegionRef
region Needs to be defined in a definition record References a Region definition and

will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_REGION is available.

See also

OTF2_EvtWriter_Leave()
OTF2_GlobalEvtReaderCallbacks_SetLeaveCallback()
OTF2_EvtReaderCallbacks_SetLeaveCallback()

Since

Version 1.0

C.58 MpiSend

A MpiSend record indicates that a MPI message send process was initiated (MPI_SEND). It keeps the necessary
information for this event: receiver of the message, communicator, and the message tag. You can optionally add
further information like the message length (size of the send buffer).

54

C.59 MpiIsend

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

uint32_t receiver MPI rank of receiver in communicator.
OTF2_←↩

CommRef
communicator Communicator ID. References a Comm definition and will be mapped to the

global definition if a mapping table of type OTF2_MAPPING_COMM is avail-
able.

uint32_t msgTag Message tag
uint64_t msgLength Message length

See also

OTF2_EvtWriter_MpiSend()
OTF2_GlobalEvtReaderCallbacks_SetMpiSendCallback()
OTF2_EvtReaderCallbacks_SetMpiSendCallback()

Since

Version 1.0

C.59 MpiIsend

A MpiIsend record indicates that a MPI message send process was initiated (MPI_ISEND). It keeps the necessary
information for this event: receiver of the message, communicator, and the message tag. You can optionally add
further information like the message length (size of the send buffer).

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

uint32_t receiver MPI rank of receiver in communicator.
OTF2_←↩

CommRef
communicator Communicator ID. References a Comm definition and will be mapped to the

global definition if a mapping table of type OTF2_MAPPING_COMM is avail-
able.

uint32_t msgTag Message tag
uint64_t msgLength Message length
uint64_t requestID ID of the related request

See also

OTF2_EvtWriter_MpiIsend()
OTF2_GlobalEvtReaderCallbacks_SetMpiIsendCallback()
OTF2_EvtReaderCallbacks_SetMpiIsendCallback()

Since

Version 1.0

55

APPENDIX C. MODULE DOCUMENTATION

C.60 MpiIsendComplete

Signals the completion of non-blocking send request.

56

C.61 MpiIrecvRequest

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

uint64_t requestID ID of the related request

See also

OTF2_EvtWriter_MpiIsendComplete()
OTF2_GlobalEvtReaderCallbacks_SetMpiIsendCompleteCallback()
OTF2_EvtReaderCallbacks_SetMpiIsendCompleteCallback()

Since

Version 1.0

C.61 MpiIrecvRequest

Signals the request of a receive, which can be completed later.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

uint64_t requestID ID of the requested receive

See also

OTF2_EvtWriter_MpiIrecvRequest()
OTF2_GlobalEvtReaderCallbacks_SetMpiIrecvRequestCallback()
OTF2_EvtReaderCallbacks_SetMpiIrecvRequestCallback()

Since

Version 1.0

C.62 MpiRecv

A MpiRecv record indicates that a MPI message was received (MPI_RECV). It keeps the necessary information for
this event: sender of the message, communicator, and the message tag. You can optionally add further information
like the message length (size of the receive buffer).

57

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

uint32_t sender MPI rank of sender in communicator.
OTF2_←↩

CommRef
communicator Communicator ID. References a Comm definition and will be mapped to the

global definition if a mapping table of type OTF2_MAPPING_COMM is avail-
able.

uint32_t msgTag Message tag
uint64_t msgLength Message length

See also

OTF2_EvtWriter_MpiRecv()
OTF2_GlobalEvtReaderCallbacks_SetMpiRecvCallback()
OTF2_EvtReaderCallbacks_SetMpiRecvCallback()

Since

Version 1.0

C.63 MpiIrecv

A MpiIrecv record indicates that a MPI message was received (MPI_IRECV). It keeps the necessary information for
this event: sender of the message, communicator, and the message tag. You can optionally add further information
like the message length (size of the receive buffer).

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

uint32_t sender MPI rank of sender in communicator.
OTF2_←↩

CommRef
communicator Communicator ID. References a Comm definition and will be mapped to the

global definition if a mapping table of type OTF2_MAPPING_COMM is avail-
able.

uint32_t msgTag Message tag
uint64_t msgLength Message length
uint64_t requestID ID of the related request

See also

OTF2_EvtWriter_MpiIrecv()
OTF2_GlobalEvtReaderCallbacks_SetMpiIrecvCallback()
OTF2_EvtReaderCallbacks_SetMpiIrecvCallback()

Since

Version 1.0

58

C.64 MpiRequestTest

C.64 MpiRequestTest

This events appears if the program tests if a request has already completed but the test failed.

59

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

uint64_t requestID ID of the related request

See also

OTF2_EvtWriter_MpiRequestTest()
OTF2_GlobalEvtReaderCallbacks_SetMpiRequestTestCallback()
OTF2_EvtReaderCallbacks_SetMpiRequestTestCallback()

Since

Version 1.0

C.65 MpiRequestCancelled

This events appears if the program canceled a request.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

uint64_t requestID ID of the related request

See also

OTF2_EvtWriter_MpiRequestCancelled()
OTF2_GlobalEvtReaderCallbacks_SetMpiRequestCancelledCallback()
OTF2_EvtReaderCallbacks_SetMpiRequestCancelledCallback()

Since

Version 1.0

C.66 MpiCollectiveBegin

A MpiCollectiveBegin record marks the begin of a MPI collective operation (MPI_GATHER, MPI_SCATTER etc.).

60

C.67 MpiCollectiveEnd

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

See also

OTF2_EvtWriter_MpiCollectiveBegin()
OTF2_GlobalEvtReaderCallbacks_SetMpiCollectiveBeginCallback()
OTF2_EvtReaderCallbacks_SetMpiCollectiveBeginCallback()

Since

Version 1.0

C.67 MpiCollectiveEnd

A MpiCollectiveEnd record marks the end of a MPI collective operation (MPI_GATHER, MPI_SCATTER etc.). It
keeps the necessary information for this event: type of collective operation, communicator, the root of this collective
operation. You can optionally add further information like sent and received bytes.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Collective←↩

Op

collectiveOp Determines which collective operation it is.

OTF2_←↩

CommRef
communicator Communicator References a Comm definition and will be mapped to the global

definition if a mapping table of type OTF2_MAPPING_COMM is available.
uint32_t root MPI rank of root in communicator or OTF2_UNDEFINED_UINT32 if the

call has no root rank.
uint64_t sizeSent Size of the sent message.
uint64_t sizeReceived Size of the received message.

See also

OTF2_EvtWriter_MpiCollectiveEnd()
OTF2_GlobalEvtReaderCallbacks_SetMpiCollectiveEndCallback()
OTF2_EvtReaderCallbacks_SetMpiCollectiveEndCallback()

Since

Version 1.0

61

APPENDIX C. MODULE DOCUMENTATION

C.68 OmpFork

An OmpFork record marks that an OpenMP Thread forks a thread team.

This event record is superseded by the ThreadFork event record and should not be used when the ThreadFork
event record is in use.

62

C.69 OmpJoin

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

uint32_t numberOf←↩

Requested←↩

Threads

Requested size of the team.

See also

OTF2_EvtWriter_OmpFork()
OTF2_GlobalEvtReaderCallbacks_SetOmpForkCallback()
OTF2_EvtReaderCallbacks_SetOmpForkCallback()

Since

Version 1.0

Deprecated In version 1.2

C.69 OmpJoin

An OmpJoin record marks that a team of threads is joint and only the master thread continues execution.

This event record is superseded by the ThreadJoin event record and should not be used when the ThreadJoin event
record is in use.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

See also

OTF2_EvtWriter_OmpJoin()
OTF2_GlobalEvtReaderCallbacks_SetOmpJoinCallback()
OTF2_EvtReaderCallbacks_SetOmpJoinCallback()

Since

Version 1.0

Deprecated In version 1.2

C.70 OmpAcquireLock

An OmpAcquireLock record marks that a thread acquires an OpenMP lock.

This event record is superseded by the ThreadAcquireLock event record and should not be used when the Thread←↩

AcquireLock event record is in use.

63

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

uint32_t lockID ID of the lock.
uint32_t acquisitionOrder A monotonically increasing number to determine the order of lock acquisitions

(with unsynchronized clocks this is otherwise not possible). Corresponding
acquire-release events have same number.

See also

OTF2_EvtWriter_OmpAcquireLock()
OTF2_GlobalEvtReaderCallbacks_SetOmpAcquireLockCallback()
OTF2_EvtReaderCallbacks_SetOmpAcquireLockCallback()

Since

Version 1.0

Deprecated In version 1.2

C.71 OmpReleaseLock

An OmpReleaseLock record marks that a thread releases an OpenMP lock.

This event record is superseded by the ThreadReleaseLock event record and should not be used when the Thread←↩

ReleaseLock event record is in use.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

uint32_t lockID ID of the lock.
uint32_t acquisitionOrder A monotonically increasing number to determine the order of lock acquisitions

(with unsynchronized clocks this is otherwise not possible). Corresponding
acquire-release events have same number.

See also

OTF2_EvtWriter_OmpReleaseLock()
OTF2_GlobalEvtReaderCallbacks_SetOmpReleaseLockCallback()
OTF2_EvtReaderCallbacks_SetOmpReleaseLockCallback()

Since

Version 1.0

Deprecated In version 1.2

64

C.72 OmpTaskCreate

C.72 OmpTaskCreate

An OmpTaskCreate record marks that an OpenMP Task was/will be created in the current region.

This event record is superseded by the ThreadTaskCreate event record and should not be used when the Thread←↩

TaskCreate event record is in use.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

uint64_t taskID Identifier of the newly created task instance.

See also

OTF2_EvtWriter_OmpTaskCreate()
OTF2_GlobalEvtReaderCallbacks_SetOmpTaskCreateCallback()
OTF2_EvtReaderCallbacks_SetOmpTaskCreateCallback()

Since

Version 1.0

Deprecated In version 1.2

C.73 OmpTaskSwitch

An OmpTaskSwitch record indicates that the execution of the current task will be suspended and another task
starts/restarts its execution. Please note that this may change the current call stack of the executing location.

This event record is superseded by the ThreadTaskSwitch event record and should not be used when the Thread←↩

TaskSwitch event record is in use.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

uint64_t taskID Identifier of the now active task instance.

See also

OTF2_EvtWriter_OmpTaskSwitch()
OTF2_GlobalEvtReaderCallbacks_SetOmpTaskSwitchCallback()
OTF2_EvtReaderCallbacks_SetOmpTaskSwitchCallback()

Since

Version 1.0

Deprecated In version 1.2

65

APPENDIX C. MODULE DOCUMENTATION

C.74 OmpTaskComplete

An OmpTaskComplete record indicates that the execution of an OpenMP task has finished.

This event record is superseded by the ThreadTaskComplete event record and should not be used when the
ThreadTaskComplete event record is in use.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

uint64_t taskID Identifier of the completed task instance.

See also

OTF2_EvtWriter_OmpTaskComplete()
OTF2_GlobalEvtReaderCallbacks_SetOmpTaskCompleteCallback()
OTF2_EvtReaderCallbacks_SetOmpTaskCompleteCallback()

Since

Version 1.0

Deprecated In version 1.2

C.75 Metric

A metric event is always stored at the location that recorded the metric. A metric event can reference a metric class
or metric instance. Therefore, metric classes and instances share same ID space. Synchronous metrics are always
located right before the according enter and leave event.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

MetricRef
metric Could be a metric class or a metric instance. References a MetricClass, or a

MetricInstance definition and will be mapped to the global definition if a map-
ping table of type OTF2_MAPPING_METRIC is available.

66

C.76 ParameterString

uint8_t numberOf←↩

Metrics
Number of metrics with in the set.

OTF2_←↩

Type
typeIDs [

numberOf←↩

Metrics
]

List of metric types. These types must match that of the corresponding
MetricMember definitions.

OTF2_←↩

Metric←↩

Value

metricValues [
numberOf←↩

Metrics
]

List of metric values.

See also

OTF2_EvtWriter_Metric()
OTF2_GlobalEvtReaderCallbacks_SetMetricCallback()
OTF2_EvtReaderCallbacks_SetMetricCallback()

Since

Version 1.0

C.76 ParameterString

A ParameterString record marks that in the current region, the specified string parameter has the specified value.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Parameter←↩

Ref

parameter Parameter ID. References a Parameter definition and will be mapped to the
global definition if a mapping table of type OTF2_MAPPING_PARAMETER is
available.

OTF2_←↩

StringRef
string Value: Handle of a string definition References a String definition and will be

mapped to the global definition if a mapping table of type OTF2_MAPPING←↩

_STRING is available.

See also

OTF2_EvtWriter_ParameterString()
OTF2_GlobalEvtReaderCallbacks_SetParameterStringCallback()
OTF2_EvtReaderCallbacks_SetParameterStringCallback()

Since

Version 1.0

C.77 ParameterInt

A ParameterInt record marks that in the current region, the specified integer parameter has the specified value.

67

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Parameter←↩

Ref

parameter Parameter ID. References a Parameter definition and will be mapped to the
global definition if a mapping table of type OTF2_MAPPING_PARAMETER is
available.

int64_t value Value of the recorded parameter.

See also

OTF2_EvtWriter_ParameterInt()
OTF2_GlobalEvtReaderCallbacks_SetParameterIntCallback()
OTF2_EvtReaderCallbacks_SetParameterIntCallback()

Since

Version 1.0

C.78 ParameterUnsignedInt

A ParameterUnsignedInt record marks that in the current region, the specified unsigned integer parameter has the
specified value.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Parameter←↩

Ref

parameter Parameter ID. References a Parameter definition and will be mapped to the
global definition if a mapping table of type OTF2_MAPPING_PARAMETER is
available.

uint64_t value Value of the recorded parameter.

See also

OTF2_EvtWriter_ParameterUnsignedInt()
OTF2_GlobalEvtReaderCallbacks_SetParameterUnsignedIntCallback()
OTF2_EvtReaderCallbacks_SetParameterUnsignedIntCallback()

Since

Version 1.0

C.79 RmaWinCreate

A RmaWinCreate record denotes the creation of a RMA window.

68

C.80 RmaWinDestroy

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window created. References a RmaWin definition and will be mapped
to the global definition if a mapping table of type OTF2_MAPPING_RMA_WIN
is available.

See also

OTF2_EvtWriter_RmaWinCreate()
OTF2_GlobalEvtReaderCallbacks_SetRmaWinCreateCallback()
OTF2_EvtReaderCallbacks_SetRmaWinCreateCallback()

Since

Version 1.2

C.80 RmaWinDestroy

A RmaWinDestroy record denotes the destruction of a RMA window.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window destructed. References a RmaWin definition and will be
mapped to the global definition if a mapping table of type OTF2_MAPPING←↩

_RMA_WIN is available.

See also

OTF2_EvtWriter_RmaWinDestroy()
OTF2_GlobalEvtReaderCallbacks_SetRmaWinDestroyCallback()
OTF2_EvtReaderCallbacks_SetRmaWinDestroyCallback()

Since

Version 1.2

C.81 RmaCollectiveBegin

A RmaCollectiveBegin record denotes the beginning of a collective RMA operation.

69

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

See also

OTF2_EvtWriter_RmaCollectiveBegin()
OTF2_GlobalEvtReaderCallbacks_SetRmaCollectiveBeginCallback()
OTF2_EvtReaderCallbacks_SetRmaCollectiveBeginCallback()

Since

Version 1.2

C.82 RmaCollectiveEnd

A RmaCollectiveEnd record denotes the end of a collective RMA operation.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Collective←↩

Op

collectiveOp Determines which collective operation it is.

OTF2_←↩

Rma←↩

SyncLevel

syncLevel Synchronization level of this collective operation.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.
uint32_t root Root process for this operation or OTF2_UNDEFINED_UINT32 if the call has

no root rank.
uint64_t bytesSent Bytes sent in operation.
uint64_t bytesReceived Bytes receives in operation.

See also

OTF2_EvtWriter_RmaCollectiveEnd()
OTF2_GlobalEvtReaderCallbacks_SetRmaCollectiveEndCallback()
OTF2_EvtReaderCallbacks_SetRmaCollectiveEndCallback()

Since

Version 1.2

C.83 RmaGroupSync

A RmaGroupSync record denotes the synchronization with a subgroup of processes on a window.

70

C.84 RmaRequestLock

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Rma←↩

SyncLevel

syncLevel Synchronization level of this collective operation.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.
OTF2_←↩

GroupRef
group Group of remote processes involved in synchronization. References a Group

definition and will be mapped to the global definition if a mapping table of type
OTF2_MAPPING_GROUP is available.

See also

OTF2_EvtWriter_RmaGroupSync()
OTF2_GlobalEvtReaderCallbacks_SetRmaGroupSyncCallback()
OTF2_EvtReaderCallbacks_SetRmaGroupSyncCallback()

Since

Version 1.2

C.84 RmaRequestLock

A RmaRequestLock record denotes the time a lock was requested and with it the earliest time it could have been
granted. It is used to mark (possibly) non-blocking lock request, as defined by the MPI standard.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.
uint32_t remote Rank of the locked remote process or OTF2_UNDEFINED_UINT32 if all pro-

cesses of the specified window are locked.
uint64_t lockId ID of the lock acquired, if multiple locks are defined on a window.
OTF2_←↩

LockType
lockType Type of lock acquired.

See also

OTF2_EvtWriter_RmaRequestLock()
OTF2_GlobalEvtReaderCallbacks_SetRmaRequestLockCallback()
OTF2_EvtReaderCallbacks_SetRmaRequestLockCallback()

71

APPENDIX C. MODULE DOCUMENTATION

Since

Version 1.2

C.85 RmaAcquireLock

A RmaAcquireLock record denotes the time a lock was acquired by the process.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.
uint32_t remote Rank of the locked remote process or OTF2_UNDEFINED_UINT32 if all pro-

cesses of the specified window are locked.
uint64_t lockId ID of the lock acquired, if multiple locks are defined on a window.
OTF2_←↩

LockType
lockType Type of lock acquired.

See also

OTF2_EvtWriter_RmaAcquireLock()
OTF2_GlobalEvtReaderCallbacks_SetRmaAcquireLockCallback()
OTF2_EvtReaderCallbacks_SetRmaAcquireLockCallback()

Since

Version 1.2

C.86 RmaTryLock

A RmaTryLock record denotes the time of an unsuccessful attempt to acquire the lock.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

72

C.87 RmaReleaseLock

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.
uint32_t remote Rank of the locked remote process or OTF2_UNDEFINED_UINT32 if all pro-

cesses of the specified window are locked.
uint64_t lockId ID of the lock acquired, if multiple locks are defined on a window.
OTF2_←↩

LockType
lockType Type of lock acquired.

See also

OTF2_EvtWriter_RmaTryLock()
OTF2_GlobalEvtReaderCallbacks_SetRmaTryLockCallback()
OTF2_EvtReaderCallbacks_SetRmaTryLockCallback()

Since

Version 1.2

C.87 RmaReleaseLock

A RmaReleaseLock record denotes the time the lock was released.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.
uint32_t remote Rank of the locked remote process or OTF2_UNDEFINED_UINT32 if all pro-

cesses of the specified window are locked.
uint64_t lockId ID of the lock released, if multiple locks are defined on a window.

See also

OTF2_EvtWriter_RmaReleaseLock()
OTF2_GlobalEvtReaderCallbacks_SetRmaReleaseLockCallback()
OTF2_EvtReaderCallbacks_SetRmaReleaseLockCallback()

Since

Version 1.2

C.88 RmaSync

A RmaSync record denotes the direct synchronization with a possibly remote process.

73

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.
uint32_t remote Rank of the locked remote process.
OTF2_←↩

Rma←↩

SyncType

syncType Type of synchronization.

See also

OTF2_EvtWriter_RmaSync()
OTF2_GlobalEvtReaderCallbacks_SetRmaSyncCallback()
OTF2_EvtReaderCallbacks_SetRmaSyncCallback()

Since

Version 1.2

C.89 RmaWaitChange

A RmaWaitChange record denotes the change of a window that was waited for.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.

See also

OTF2_EvtWriter_RmaWaitChange()
OTF2_GlobalEvtReaderCallbacks_SetRmaWaitChangeCallback()
OTF2_EvtReaderCallbacks_SetRmaWaitChangeCallback()

Since

Version 1.2

C.90 RmaPut

A RmaPut record denotes the time a put operation was issued.

74

C.91 RmaGet

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.
uint32_t remote Rank of the target process.
uint64_t bytes Bytes sent to target.
uint64_t matchingId ID used for matching the corresponding completion record.

See also

OTF2_EvtWriter_RmaPut()
OTF2_GlobalEvtReaderCallbacks_SetRmaPutCallback()
OTF2_EvtReaderCallbacks_SetRmaPutCallback()

Since

Version 1.2

C.91 RmaGet

A RmaGet record denotes the time a get operation was issued.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.
uint32_t remote Rank of the target process.
uint64_t bytes Bytes received from target.
uint64_t matchingId ID used for matching the corresponding completion record.

See also

OTF2_EvtWriter_RmaGet()
OTF2_GlobalEvtReaderCallbacks_SetRmaGetCallback()
OTF2_EvtReaderCallbacks_SetRmaGetCallback()

Since

Version 1.2

C.92 RmaAtomic

A RmaAtomic record denotes the time a atomic operation was issued.

75

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.
uint32_t remote Rank of the target process.
OTF2_←↩

Rma←↩

Atomic←↩

Type

type Type of atomic operation.

uint64_t bytesSent Bytes sent to target.
uint64_t bytesReceived Bytes received from target.
uint64_t matchingId ID used for matching the corresponding completion record.

See also

OTF2_EvtWriter_RmaAtomic()
OTF2_GlobalEvtReaderCallbacks_SetRmaAtomicCallback()
OTF2_EvtReaderCallbacks_SetRmaAtomicCallback()

Since

Version 1.2

C.93 RmaOpCompleteBlocking

A RmaOpCompleteBlocking record denotes the local completion of a blocking RMA operation.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.
uint64_t matchingId ID used for matching the corresponding RMA operation record.

See also

OTF2_EvtWriter_RmaOpCompleteBlocking()
OTF2_GlobalEvtReaderCallbacks_SetRmaOpCompleteBlockingCallback()
OTF2_EvtReaderCallbacks_SetRmaOpCompleteBlockingCallback()

Since

Version 1.2

76

C.94 RmaOpCompleteNonBlocking

C.94 RmaOpCompleteNonBlocking

A RmaOpCompleteNonBlocking record denotes the local completion of a non-blocking RMA operation.

77

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.
uint64_t matchingId ID used for matching the corresponding RMA operation record.

See also

OTF2_EvtWriter_RmaOpCompleteNonBlocking()
OTF2_GlobalEvtReaderCallbacks_SetRmaOpCompleteNonBlockingCallback()
OTF2_EvtReaderCallbacks_SetRmaOpCompleteNonBlockingCallback()

Since

Version 1.2

C.95 RmaOpTest

A RmaOpTest record denotes that a non-blocking RMA operation has been tested for completion unsuccessfully.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.
uint64_t matchingId ID used for matching the corresponding RMA operation record.

See also

OTF2_EvtWriter_RmaOpTest()
OTF2_GlobalEvtReaderCallbacks_SetRmaOpTestCallback()
OTF2_EvtReaderCallbacks_SetRmaOpTestCallback()

Since

Version 1.2

C.96 RmaOpCompleteRemote

A RmaOpCompleteRemote record denotes the remote completion of a RMA operation.

78

C.97 ThreadFork

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

RmaWin←↩

Ref

win ID of the window used for this operation. References a RmaWin definition and
will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_RMA_WIN is available.
uint64_t matchingId ID used for matching the corresponding RMA operation record.

See also

OTF2_EvtWriter_RmaOpCompleteRemote()
OTF2_GlobalEvtReaderCallbacks_SetRmaOpCompleteRemoteCallback()
OTF2_EvtReaderCallbacks_SetRmaOpCompleteRemoteCallback()

Since

Version 1.2

C.97 ThreadFork

A ThreadFork record marks that a thread forks a thread team.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Paradigm
model The threading paradigm this event took place.

uint32_t numberOf←↩

Requested←↩

Threads

Requested size of the team.

See also

OTF2_EvtWriter_ThreadFork()
OTF2_GlobalEvtReaderCallbacks_SetThreadForkCallback()
OTF2_EvtReaderCallbacks_SetThreadForkCallback()

Since

Version 1.2

C.98 ThreadJoin

A ThreadJoin record marks that a team of threads is joint and only the master thread continues execution.

79

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Paradigm
model The threading paradigm this event took place.

See also

OTF2_EvtWriter_ThreadJoin()
OTF2_GlobalEvtReaderCallbacks_SetThreadJoinCallback()
OTF2_EvtReaderCallbacks_SetThreadJoinCallback()

Since

Version 1.2

C.99 ThreadTeamBegin

The current location enters the specified thread team.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

CommRef
threadTeam Thread team References a Comm definition and will be mapped to the global

definition if a mapping table of type OTF2_MAPPING_COMM is available.

See also

OTF2_EvtWriter_ThreadTeamBegin()
OTF2_GlobalEvtReaderCallbacks_SetThreadTeamBeginCallback()
OTF2_EvtReaderCallbacks_SetThreadTeamBeginCallback()

Since

Version 1.2

C.100 ThreadTeamEnd

The current location leaves the specified thread team.

80

C.101 ThreadAcquireLock

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

CommRef
threadTeam Thread team References a Comm definition and will be mapped to the global

definition if a mapping table of type OTF2_MAPPING_COMM is available.

See also

OTF2_EvtWriter_ThreadTeamEnd()
OTF2_GlobalEvtReaderCallbacks_SetThreadTeamEndCallback()
OTF2_EvtReaderCallbacks_SetThreadTeamEndCallback()

Since

Version 1.2

C.101 ThreadAcquireLock

A ThreadAcquireLock record marks that a thread acquires a lock.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Paradigm
model The threading paradigm this event took place.

uint32_t lockID ID of the lock.
uint32_t acquisitionOrder A monotonically increasing number to determine the order of lock acquisitions

(with unsynchronized clocks this is otherwise not possible). Corresponding
acquire-release events have same number.

See also

OTF2_EvtWriter_ThreadAcquireLock()
OTF2_GlobalEvtReaderCallbacks_SetThreadAcquireLockCallback()
OTF2_EvtReaderCallbacks_SetThreadAcquireLockCallback()

Since

Version 1.2

C.102 ThreadReleaseLock

A ThreadReleaseLock record marks that a thread releases a lock.

81

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Paradigm
model The threading paradigm this event took place.

uint32_t lockID ID of the lock.
uint32_t acquisitionOrder A monotonically increasing number to determine the order of lock acquisitions

(with unsynchronized clocks this is otherwise not possible). Corresponding
acquire-release events have same number.

See also

OTF2_EvtWriter_ThreadReleaseLock()
OTF2_GlobalEvtReaderCallbacks_SetThreadReleaseLockCallback()
OTF2_EvtReaderCallbacks_SetThreadReleaseLockCallback()

Since

Version 1.2

C.103 ThreadTaskCreate

A ThreadTaskCreate record marks that a task in was/will be created and will be processed by the specified thread
team.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

CommRef
threadTeam Thread team References a Comm definition and will be mapped to the global

definition if a mapping table of type OTF2_MAPPING_COMM is available.
uint32_t creatingThread Creating thread of this task.
uint32_t generation←↩

Number
Thread-private generation number of task's creating thread.

See also

OTF2_EvtWriter_ThreadTaskCreate()
OTF2_GlobalEvtReaderCallbacks_SetThreadTaskCreateCallback()
OTF2_EvtReaderCallbacks_SetThreadTaskCreateCallback()

Since

Version 1.2

C.104 ThreadTaskSwitch

A ThreadTaskSwitch record indicates that the execution of the current task will be suspended and another task
starts/restarts its execution. Please note that this may change the current call stack of the executing location.

82

C.105 ThreadTaskComplete

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

CommRef
threadTeam Thread team References a Comm definition and will be mapped to the global

definition if a mapping table of type OTF2_MAPPING_COMM is available.
uint32_t creatingThread Creating thread of this task.
uint32_t generation←↩

Number
Thread-private generation number of task's creating thread.

See also

OTF2_EvtWriter_ThreadTaskSwitch()
OTF2_GlobalEvtReaderCallbacks_SetThreadTaskSwitchCallback()
OTF2_EvtReaderCallbacks_SetThreadTaskSwitchCallback()

Since

Version 1.2

C.105 ThreadTaskComplete

A ThreadTaskComplete record indicates that the execution of an OpenMP task has finished.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

CommRef
threadTeam Thread team References a Comm definition and will be mapped to the global

definition if a mapping table of type OTF2_MAPPING_COMM is available.
uint32_t creatingThread Creating thread of this task.
uint32_t generation←↩

Number
Thread-private generation number of task's creating thread.

See also

OTF2_EvtWriter_ThreadTaskComplete()
OTF2_GlobalEvtReaderCallbacks_SetThreadTaskCompleteCallback()
OTF2_EvtReaderCallbacks_SetThreadTaskCompleteCallback()

Since

Version 1.2

C.106 ThreadCreate

The location created successfully a new thread.

83

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

CommRef
thread←↩

Contingent
The thread contingent. References a Comm definition and will be mapped
to the global definition if a mapping table of type OTF2_MAPPING_COMM is
available.

uint64_t sequenceCount A threadContingent unique number. The corresponding ThreadBegin
event does have the same number.

See also

OTF2_EvtWriter_ThreadCreate()
OTF2_GlobalEvtReaderCallbacks_SetThreadCreateCallback()
OTF2_EvtReaderCallbacks_SetThreadCreateCallback()

Since

Version 1.3

C.107 ThreadBegin

Marks the begin of a thread created by another thread.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

CommRef
thread←↩

Contingent
The thread contingent. References a Comm definition and will be mapped
to the global definition if a mapping table of type OTF2_MAPPING_COMM is
available.

uint64_t sequenceCount A threadContingent unique number. The corresponding ThreadCreate
event does have the same number.

See also

OTF2_EvtWriter_ThreadBegin()
OTF2_GlobalEvtReaderCallbacks_SetThreadBeginCallback()
OTF2_EvtReaderCallbacks_SetThreadBeginCallback()

Since

Version 1.3

C.108 ThreadWait

The location waits for the completion of another thread.

84

C.109 ThreadEnd

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

CommRef
thread←↩

Contingent
The thread contingent. References a Comm definition and will be mapped
to the global definition if a mapping table of type OTF2_MAPPING_COMM is
available.

uint64_t sequenceCount A threadContingent unique number. The corresponding ThreadEnd
event does have the same number.

See also

OTF2_EvtWriter_ThreadWait()
OTF2_GlobalEvtReaderCallbacks_SetThreadWaitCallback()
OTF2_EvtReaderCallbacks_SetThreadWaitCallback()

Since

Version 1.3

C.109 ThreadEnd

Marks the end of a thread.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

CommRef
thread←↩

Contingent
The thread contingent. References a Comm definition and will be mapped
to the global definition if a mapping table of type OTF2_MAPPING_COMM is
available.

uint64_t sequenceCount A threadContingent unique number. The corresponding ThreadWait
event does have the same number. OTF2_UNDEFINED_UINT64 in case no
corresponding ThreadWait event exists.

See also

OTF2_EvtWriter_ThreadEnd()
OTF2_GlobalEvtReaderCallbacks_SetThreadEndCallback()
OTF2_EvtReaderCallbacks_SetThreadEndCallback()

Since

Version 1.3

85

APPENDIX C. MODULE DOCUMENTATION

C.110 CallingContextEnter

The thread entered an instrumented region, represented by the referenced CallingContext. In contrast to the Enter
event, it gives the full calling context through the CallingContext tree.

Events based on the CallingContext definition are mutually exclusive with the Enter/Leave events in a trace.

If no callback for this event is set but a callback for Enter events is defined, the reader will automatically generate an
Enter callback call for the Region referenced by the CallingContext attribute of this event. Note that this emulation
does not re-create the full calling context! It only re-creates the event order for instrumented regions.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Calling←↩

ContextRef

callingContext The entered region as referenced by the CallingContext definition. References
a CallingContext definition and will be mapped to the global definition if a map-
ping table of type OTF2_MAPPING_CALLING_CONTEXT is available.

uint32_t unwindDistance The unwindDistance for this callingContext. See the description in
CallingContext.

See also

OTF2_EvtWriter_CallingContextEnter()
OTF2_GlobalEvtReaderCallbacks_SetCallingContextEnterCallback()
OTF2_EvtReaderCallbacks_SetCallingContextEnterCallback()

Since

Version 2.0

C.111 CallingContextLeave

The thread left an instrumented region, represented by the referenced CallingContext. In contrast to the Leave
event, it gives the full calling context through the CallingContext tree.

The unwind distance for this CallingContext is defined to be 1. Because it must be assumed that the instrumented
region made progress since the previous CallingContext event.

Events based on the CallingContext definition are mutually exclusive with the Enter/Leave events in a trace.

The parent of the CallingContext must be used as the previous calling context for the next event.

If no callback for this event is set but a callback for Leave events is defined, the reader will automatically generate an
Leave callback call for the Region referenced by the CallingContext attribute of this event. Note that this emulation
does not re-create the full calling context! It only re-creates the event order for instrumented regions.

86

C.112 CallingContextSample

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Calling←↩

ContextRef

callingContext The left region as referenced by the CallingContext definition. References a
CallingContext definition and will be mapped to the global definition if a map-
ping table of type OTF2_MAPPING_CALLING_CONTEXT is available.

See also

OTF2_EvtWriter_CallingContextLeave()
OTF2_GlobalEvtReaderCallbacks_SetCallingContextLeaveCallback()
OTF2_EvtReaderCallbacks_SetCallingContextLeaveCallback()

Since

Version 2.0

C.112 CallingContextSample

The thread was interrupted to take a sample of its current state (region and source code location).

Events based on the CallingContext definition are mutually exclusive with the Enter/Leave events in a trace.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

Calling←↩

ContextRef

callingContext Describes the calling context of the thread when it was interrupted. Refer-
ences a CallingContext definition and will be mapped to the global definition if
a mapping table of type OTF2_MAPPING_CALLING_CONTEXT is available.

uint32_t unwindDistance The unwindDistance for this callingContext. See the description in
CallingContext.

OTF2_←↩

Interrupt←↩

Generator←↩

Ref

interrupt←↩

Generator
References a InterruptGenerator definition and will be mapped to the global
definition if a mapping table of type OTF2_MAPPING_INTERRUPT_GENE←↩

RATOR is available.

See also

OTF2_EvtWriter_CallingContextSample()
OTF2_GlobalEvtReaderCallbacks_SetCallingContextSampleCallback()
OTF2_EvtReaderCallbacks_SetCallingContextSampleCallback()

Since

Version 1.5

87

APPENDIX C. MODULE DOCUMENTATION

C.113 IoCreateHandle

An IoCreateHandle record marks the creation of a new active I/O handle that can be used by subsequent I/O
operation events.

An IoHandle is active between a pair of consecutive IoCreateHandle and IoDestroyHandle events. All Locations of
a LocationGroup have access to an active IoHandle.

If the Comm attribute of the IoHandle handle is not OTF2_UNDEFINED_COMM, this is a collective operation over
Comm.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_Io←↩

HandleRef
handle A previously inactive I/O handle which will be activated by this record. Ref-

erences a IoHandle definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_IO_HANDLE is available.

OTF2_Io←↩

Access←↩

Mode

mode Determines which I/O operations can be applied to this I/O handle (e.g., read-
only, write-only, read-write).

OTF2_Io←↩

Creation←↩

Flag

creationFlags Requested I/O handle creation flags (e.g., create, exclusive, etc.).

OTF2_Io←↩

StatusFlag
statusFlags I/O handle status flags which will be associated with the handle attribute

(e.g., append, create, close-on-exec, async, etc).

See also

OTF2_EvtWriter_IoCreateHandle()
OTF2_GlobalEvtReaderCallbacks_SetIoCreateHandleCallback()
OTF2_EvtReaderCallbacks_SetIoCreateHandleCallback()

Since

Version 2.1

C.114 IoDestroyHandle

An IoDestroyHandle record marks the end of an active I/O handle's lifetime.

An IoHandle is active between a pair of consecutive IoCreateHandle and IoDestroyHandle events. All Locations of
a LocationGroup have access to an active IoHandle.

If the Comm attribute of the IoHandle handle is not OTF2_UNDEFINED_COMM, this is a collective operation over
Comm.

88

C.115 IoDuplicateHandle

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_Io←↩

HandleRef
handle An active I/O handle which will be inactivated by this records. References a

IoHandle definition and will be mapped to the global definition if a mapping
table of type OTF2_MAPPING_IO_HANDLE is available.

See also

OTF2_EvtWriter_IoDestroyHandle()
OTF2_GlobalEvtReaderCallbacks_SetIoDestroyHandleCallback()
OTF2_EvtReaderCallbacks_SetIoDestroyHandleCallback()

Since

Version 2.1

C.115 IoDuplicateHandle

An IoDuplicateHandle record marks the duplication of an already existing active I/O handle.

The new I/O handle newHandle is active after this event.

Both IoHandles must reference the same Comm definition or be OTF2_UNDEFINED_COMM. If the Comm attribute
of the IoHandle handles is not OTF2_UNDEFINED_COMM, this is a collective operation over Comm.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_Io←↩

HandleRef
oldHandle An active I/O handle. References a IoHandle definition and will be mapped to

the global definition if a mapping table of type OTF2_MAPPING_IO_HANDLE
is available.

OTF2_Io←↩

HandleRef
newHandle A previously inactive I/O handle which will be activated by this record. Ref-

erences a IoHandle definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_IO_HANDLE is available.

OTF2_Io←↩

StatusFlag
statusFlags The status flag for the new I/O handle newHandle. No status flags will be

inherited from the I/O handle oldHandle.

See also

OTF2_EvtWriter_IoDuplicateHandle()
OTF2_GlobalEvtReaderCallbacks_SetIoDuplicateHandleCallback()
OTF2_EvtReaderCallbacks_SetIoDuplicateHandleCallback()

Since

Version 2.1

89

APPENDIX C. MODULE DOCUMENTATION

C.116 IoSeek

An IoSeek record marks a change of the position, e.g., within a file.

90

C.117 IoChangeStatusFlags

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_Io←↩

HandleRef
handle An active I/O handle. References a IoHandle definition and will be mapped to

the global definition if a mapping table of type OTF2_MAPPING_IO_HANDLE
is available.

int64_t offsetRequest Requested offset.
OTF2_Io←↩

Seek←↩

Option

whence Position inside the file from where offsetRequest should be applied (e.g.,
absolute from the start or end, relative to the current position).

uint64_t offsetResult Resulting offset, e.g., within the file relative to the beginning of the file.

See also

OTF2_EvtWriter_IoSeek()
OTF2_GlobalEvtReaderCallbacks_SetIoSeekCallback()
OTF2_EvtReaderCallbacks_SetIoSeekCallback()

Since

Version 2.1

C.117 IoChangeStatusFlags

An IoChangeStatusFlags record marks a change to the status flags associated with an active I/O handle.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_Io←↩

HandleRef
handle An active I/O handle. References a IoHandle definition and will be mapped to

the global definition if a mapping table of type OTF2_MAPPING_IO_HANDLE
is available.

OTF2_Io←↩

StatusFlag
statusFlags Set flags (e.g., close-on-exec, append, etc.).

See also

OTF2_EvtWriter_IoChangeStatusFlags()
OTF2_GlobalEvtReaderCallbacks_SetIoChangeStatusFlagsCallback()
OTF2_EvtReaderCallbacks_SetIoChangeStatusFlagsCallback()

Since

Version 2.1

C.118 IoDeleteFile

An IoDeleteFile record marks the deletion of an I/O file.

91

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_Io←↩

Paradigm←↩

Ref

ioParadigm The I/O paradigm which induced the deletion. References a IoParadigm defi-
nition.

OTF2_Io←↩

FileRef
file File identifier. References a IoRegularFile, or a IoDirectory definition and will

be mapped to the global definition if a mapping table of type OTF2_MAPPI←↩

NG_IO_FILE is available.

See also

OTF2_EvtWriter_IoDeleteFile()
OTF2_GlobalEvtReaderCallbacks_SetIoDeleteFileCallback()
OTF2_EvtReaderCallbacks_SetIoDeleteFileCallback()

Since

Version 2.1

C.119 IoOperationBegin

An IoOperationBegin record marks the begin of a file operation (read, write, etc.).

See Event order for I/O operation records for the possible event orders.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_Io←↩

HandleRef
handle An active I/O handle. References a IoHandle definition and will be mapped to

the global definition if a mapping table of type OTF2_MAPPING_IO_HANDLE
is available.

OTF2_Io←↩

Operation←↩

Mode

mode Mode of an I/O handle operation (e.g., read or write).

OTF2_Io←↩

Operation←↩

Flag

operationFlags Special semantic of this operation.

92

C.120 IoOperationTest

uint64_t bytesRequest Requested bytes to write/read.
uint64_t matchingId Identifier used to correlate associated event records of an I/O operation. This

identifier is unique for the referenced IoHandle.

See also

OTF2_EvtWriter_IoOperationBegin()
OTF2_GlobalEvtReaderCallbacks_SetIoOperationBeginCallback()
OTF2_EvtReaderCallbacks_SetIoOperationBeginCallback()

Since

Version 2.1

C.120 IoOperationTest

An IoOperationTest record marks an unsuccessful test whether an I/O operation has already finished.

See Event order for I/O operation records for the possible event orders.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_Io←↩

HandleRef
handle An active I/O handle. References a IoHandle definition and will be mapped to

the global definition if a mapping table of type OTF2_MAPPING_IO_HANDLE
is available.

uint64_t matchingId Identifier used to correlate associated event records of an I/O operation. This
identifier is unique for the referenced IoHandle.

See also

OTF2_EvtWriter_IoOperationTest()
OTF2_GlobalEvtReaderCallbacks_SetIoOperationTestCallback()
OTF2_EvtReaderCallbacks_SetIoOperationTestCallback()

Since

Version 2.1

C.121 IoOperationIssued

An IoOperationIssued record marks the successful initiation of a non- blocking operation (read, write etc.) on an
active I/O handle.

See Event order for I/O operation records for the possible event orders.

93

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_Io←↩

HandleRef
handle An active I/O handle. References a IoHandle definition and will be mapped to

the global definition if a mapping table of type OTF2_MAPPING_IO_HANDLE
is available.

uint64_t matchingId Identifier used to correlate associated event records of an I/O operation. This
identifier is unique for the referenced IoHandle.

See also

OTF2_EvtWriter_IoOperationIssued()
OTF2_GlobalEvtReaderCallbacks_SetIoOperationIssuedCallback()
OTF2_EvtReaderCallbacks_SetIoOperationIssuedCallback()

Since

Version 2.1

C.122 IoOperationComplete

An IoOperationComplete record marks the end of a file operation (read, write etc.) on an active I/O handle.

See Event order for I/O operation records for the possible event orders.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_Io←↩

HandleRef
handle An active I/O handle. References a IoHandle definition and will be mapped to

the global definition if a mapping table of type OTF2_MAPPING_IO_HANDLE
is available.

uint64_t bytesResult Number of actual transferred bytes.
uint64_t matchingId Identifier used to correlate associated event records of an I/O operation. This

identifier is unique for the referenced IoHandle.

See also

OTF2_EvtWriter_IoOperationComplete()
OTF2_GlobalEvtReaderCallbacks_SetIoOperationCompleteCallback()
OTF2_EvtReaderCallbacks_SetIoOperationCompleteCallback()

Since

Version 2.1

94

C.123 IoOperationCancelled

C.123 IoOperationCancelled

An IoOperationCancelled record marks the successful cancellation of a non-blocking operation (read, write etc.) on
an active I/O handle.

See Event order for I/O operation records for the possible event orders.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_Io←↩

HandleRef
handle An active I/O handle. References a IoHandle definition and will be mapped to

the global definition if a mapping table of type OTF2_MAPPING_IO_HANDLE
is available.

uint64_t matchingId Identifier used to correlate associated event records of an I/O operation. This
identifier is unique for the referenced IoHandle.

See also

OTF2_EvtWriter_IoOperationCancelled()
OTF2_GlobalEvtReaderCallbacks_SetIoOperationCancelledCallback()
OTF2_EvtReaderCallbacks_SetIoOperationCancelledCallback()

Since

Version 2.1

C.124 IoAcquireLock

An IoAcquireLock record marks the acquisition of an I/O lock.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_Io←↩

HandleRef
handle An active I/O handle. References a IoHandle definition and will be mapped to

the global definition if a mapping table of type OTF2_MAPPING_IO_HANDLE
is available.

95

APPENDIX C. MODULE DOCUMENTATION

OTF2_←↩

LockType
lockType Type of the lock.

See also

OTF2_EvtWriter_IoAcquireLock()
OTF2_GlobalEvtReaderCallbacks_SetIoAcquireLockCallback()
OTF2_EvtReaderCallbacks_SetIoAcquireLockCallback()

Since

Version 2.1

C.125 IoReleaseLock

An IoReleaseLock record marks the release of an I/O lock.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_Io←↩

HandleRef
handle An active I/O handle. References a IoHandle definition and will be mapped to

the global definition if a mapping table of type OTF2_MAPPING_IO_HANDLE
is available.

OTF2_←↩

LockType
lockType Type of the lock.

See also

OTF2_EvtWriter_IoReleaseLock()
OTF2_GlobalEvtReaderCallbacks_SetIoReleaseLockCallback()
OTF2_EvtReaderCallbacks_SetIoReleaseLockCallback()

Since

Version 2.1

C.126 IoTryLock

An IoTryLock record marks when an I/O lock was requested but not granted.

96

C.127 ProgramBegin

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_Io←↩

HandleRef
handle An active I/O handle. References a IoHandle definition and will be mapped to

the global definition if a mapping table of type OTF2_MAPPING_IO_HANDLE
is available.

OTF2_←↩

LockType
lockType Type of the lock.

See also

OTF2_EvtWriter_IoTryLock()
OTF2_GlobalEvtReaderCallbacks_SetIoTryLockCallback()
OTF2_EvtReaderCallbacks_SetIoTryLockCallback()

Since

Version 2.1

C.127 ProgramBegin

The ProgramBegin record marks the begin of the program.

This event is restricted to happen at most once on any Location in a LocationGroup that is of type OTF2_LOCAT←↩

ION_GROUP_TYPE_PROCESS.

If there is a ProgramBegin record, a corresponding ProgramEnd record on any Location in the same LocationGroup
is mandatory and vice versa.

None of the timestamps recorded within the same LocationGroup must be smaller than ProgramBegin's timestamp.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

OTF2_←↩

StringRef
programName The name of the program. References a String definition and will be mapped

to the global definition if a mapping table of type OTF2_MAPPING_STRING is
available.

97

APPENDIX C. MODULE DOCUMENTATION

uint32_t numberOf←↩

Arguments
Number of additional arguments to the program.

OTF2_←↩

StringRef
program←↩

Arguments [
numberOf←↩

Arguments
]

List of additional arguments to the program.

See also

OTF2_EvtWriter_ProgramBegin()
OTF2_GlobalEvtReaderCallbacks_SetProgramBeginCallback()
OTF2_EvtReaderCallbacks_SetProgramBeginCallback()

Since

Version 2.1

C.128 ProgramEnd

The ProgramEnd record marks the end of the program.

This event is restricted to happen at most once on any Location in a LocationGroup that is of type OTF2_LOCAT←↩

ION_GROUP_TYPE_PROCESS.

If there is a ProgramEnd record, a corresponding ProgramBegin record on any Location in the same LocationGroup
is mandatory, and vice versa.

None of the timestamps recorded within the same LocationGroup must be larger than ProgramEnd's timestamp.

Attributes

OTF2_←↩

Location←↩

Ref

location The location where this event happened.

OTF2_←↩

Time←↩

Stamp

timestamp The time when this event happened.

int64_t exitStatus The exit status of the program.
Note, that on some systems only the least significant 8 bits may be visible to
other processes.
Use OTF2_UNDEFINED_INT64, if the exit status was not available.

See also

OTF2_EvtWriter_ProgramEnd()
OTF2_GlobalEvtReaderCallbacks_SetProgramEndCallback()
OTF2_EvtReaderCallbacks_SetProgramEndCallback()

Since

Version 2.1

98

C.129 List of all marker records

C.129 List of all marker records

C.130 OTF2_MarkerRef DefMarker

Group markers by name and severity.

Attributes

const
char∗

markerGroup Group name, e.g., "MUST", ...

const
char∗

markerCategory Marker category, e.g., "Argument type error", ...

OTF2_←↩

Marker←↩

Severity

severity The severity for these markers.

See also

OTF2_MarkerWriter_WriteDefMarker()
OTF2_MarkerReaderCallbacks_SetDefMarkerCallback()

Since

Version 1.2

C.131 Marker

A user marker instance, with implied time stamp.

Attributes

OTF2_←↩

Time←↩

Stamp

timestamp The time when this marker happened.

OTF2_←↩

Time←↩

Stamp

duration A possible duration of this marker. May be 0.

OTF2_←↩

MarkerRef
marker Groups this marker by name and severity. References a DefMarker definition.

OTF2_←↩

Marker←↩

Scope

scope The type of scope of this marker instance.

uint64_t scopeRef The scope instance of this marker. Depends on scope.
const
char∗

text A textual description for this marker.

See also

OTF2_MarkerWriter_WriteMarker()
OTF2_MarkerReaderCallbacks_SetMarkerCallback()

Since

Version 1.2

99

APPENDIX C. MODULE DOCUMENTATION

C.132 List of all snapshot records

C.133 SnapshotStart

This record marks the start of a snapshot.

A snapshot consists of a timestamp and a set of snapshot records. All these snapshot records have the same snap-
shot time. A snapshot starts with one SnapshotStart record and closes with one SnapshotEnd record. All snapshot
records inbetween are ordered by the origEventTime, which are also less than the snapshot timestamp. Ie.
The timestamp of the next event read from the event stream is greater or equal to the snapshot time.

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

uint64_t numberOf←↩

Records
Number of snapshot event records in this snapshot. Excluding the Snapshot←↩

End record.

See also

OTF2_SnapWriter_SnapshotStart()
OTF2_GlobalSnapReaderCallbacks_SetSnapshotStartCallback()
OTF2_SnapReaderCallbacks_SetSnapshotStartCallback()

Since

Version 1.2

C.134 SnapshotEnd

This record marks the end of a snapshot. It contains the position to continue reading in the event trace for this
location. Use OTF2_EvtReader_Seek with contReadPos as the position.

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

100

C.135 MeasurementOnOffSnap

uint64_t contReadPos Position to continue reading in the event trace.

See also

OTF2_SnapWriter_SnapshotEnd()
OTF2_GlobalSnapReaderCallbacks_SetSnapshotEndCallback()
OTF2_SnapReaderCallbacks_SetSnapshotEndCallback()

Since

Version 1.2

C.135 MeasurementOnOffSnap

The last occurrence of a MeasurementOnOff event of this location, if any.

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

OTF2_←↩

Measurement←↩

Mode

measurement←↩

Mode
Is the measurement turned on (OTF2_MEASUREMENT_ON) or off (OTF2←↩

_MEASUREMENT_OFF)?

See also

MeasurementOnOff event
OTF2_SnapWriter_MeasurementOnOff()
OTF2_GlobalSnapReaderCallbacks_SetMeasurementOnOffCallback()
OTF2_SnapReaderCallbacks_SetMeasurementOnOffCallback()

Since

Version 1.2

C.136 EnterSnap

This record exists for each Enter event where the corresponding Leave event did not occur before the snapshot.

101

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

OTF2_←↩

RegionRef
region Needs to be defined in a definition record References a Region definition and

will be mapped to the global definition if a mapping table of type OTF2_MA←↩

PPING_REGION is available.

See also

Enter event
OTF2_SnapWriter_Enter()
OTF2_GlobalSnapReaderCallbacks_SetEnterCallback()
OTF2_SnapReaderCallbacks_SetEnterCallback()

Since

Version 1.2

C.137 MpiSendSnap

This record exists for each MpiSend event where the matching receive message event did not occur on the remote
location before the snapshot. This could either be a MpiRecv or a MpiIrecv event. Note that it may so, that a
previous MpiIsend with the same envelope than this one is neither completed not canceled yet, thus the matching
receive may already occurred, but the matching couldn't be done yet.

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

uint32_t receiver MPI rank of receiver in communicator.
OTF2_←↩

CommRef
communicator Communicator ID. References a Comm definition and will be mapped to the

global definition if a mapping table of type OTF2_MAPPING_COMM is avail-
able.

102

C.138 MpiIsendSnap

uint32_t msgTag Message tag
uint64_t msgLength Message length

See also

MpiSend event
OTF2_SnapWriter_MpiSend()
OTF2_GlobalSnapReaderCallbacks_SetMpiSendCallback()
OTF2_SnapReaderCallbacks_SetMpiSendCallback()

Since

Version 1.2

C.138 MpiIsendSnap

This record exists for each MpiIsend event where a corresponding MpiIsendComplete or MpiRequestCancelled
event did not occur on this location before the snapshot. Or the corresponding MpiIsendComplete did occurred (the
MpiIsendCompleteSnap record exists in the snapshot) but the matching receive message event did not occur on
the remote location before the snapshot. (This could either be anMpiRecv or a MpiIrecv event.)

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

uint32_t receiver MPI rank of receiver in communicator.
OTF2_←↩

CommRef
communicator Communicator ID. References a Comm definition and will be mapped to the

global definition if a mapping table of type OTF2_MAPPING_COMM is avail-
able.

uint32_t msgTag Message tag
uint64_t msgLength Message length
uint64_t requestID ID of the related request

See also

MpiIsend event
OTF2_SnapWriter_MpiIsend()
OTF2_GlobalSnapReaderCallbacks_SetMpiIsendCallback()
OTF2_SnapReaderCallbacks_SetMpiIsendCallback()

Since

Version 1.2

C.139 MpiIsendCompleteSnap

This record exists for each MpiIsend event where the corresponding MpiIsendComplete event occurred, but where
the matching receive message event did not occur on the remote location before the snapshot. (This could either
be a MpiRecv or a MpiIrecv event.) .

103

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

uint64_t requestID ID of the related request

See also

MpiIsendComplete event
OTF2_SnapWriter_MpiIsendComplete()
OTF2_GlobalSnapReaderCallbacks_SetMpiIsendCompleteCallback()
OTF2_SnapReaderCallbacks_SetMpiIsendCompleteCallback()

Since

Version 1.2

C.140 MpiRecvSnap

This record exists for each MpiRecv event where the matching send message event did not occur on the remote
location before the snapshot. This could either be a MpiSend or a MpiIsendComplete event. Or a MpiIrecvRequest
occurred before this event but the corresponding MpiIrecv event did not occurred before this snapshot. In this case
the message matching couldn't performed yet, because the envelope of the ongoing MpiIrecvRequest is not yet
known.

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

uint32_t sender MPI rank of sender in communicator.
OTF2_←↩

CommRef
communicator Communicator ID. References a Comm definition and will be mapped to the

global definition if a mapping table of type OTF2_MAPPING_COMM is avail-
able.

104

C.141 MpiIrecvRequestSnap

uint32_t msgTag Message tag
uint64_t msgLength Message length

See also

MpiRecv event
OTF2_SnapWriter_MpiRecv()
OTF2_GlobalSnapReaderCallbacks_SetMpiRecvCallback()
OTF2_SnapReaderCallbacks_SetMpiRecvCallback()

Since

Version 1.2

C.141 MpiIrecvRequestSnap

This record exists for each MpiIrecvRequest event where an corresponding MpiIrecv or MpiRequestCancelled event
did not occur on this location before the snapshot. Or the corresponding MpiIrecv did occurred (the MpiIrecvSnap
record exists in the snapshot) but the matching receive message event did not occur on the remote location before
the snapshot. This could either be an MpiRecv or a MpiIrecv event.

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

uint64_t requestID ID of the requested receive

See also

MpiIrecvRequest event
OTF2_SnapWriter_MpiIrecvRequest()
OTF2_GlobalSnapReaderCallbacks_SetMpiIrecvRequestCallback()
OTF2_SnapReaderCallbacks_SetMpiIrecvRequestCallback()

Since

Version 1.2

C.142 MpiIrecvSnap

This record exists for each MpiIrecv event where the matching send message event did not occur on the remote
location before the snapshot. This could either be a MpiSend or a MpiIsendComplete event. Or a MpiIrecvRequest
occurred before this event but the corresponding MpiIrecv event did not occurred before this snapshot. In this case
the message matching couldn't performed yet, because the envelope of the ongoing MpiIrecvRequest is not yet
known.

105

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

uint32_t sender MPI rank of sender in communicator.
OTF2_←↩

CommRef
communicator Communicator ID. References a Comm definition and will be mapped to the

global definition if a mapping table of type OTF2_MAPPING_COMM is avail-
able.

uint32_t msgTag Message tag
uint64_t msgLength Message length
uint64_t requestID ID of the related request

See also

MpiIrecv event
OTF2_SnapWriter_MpiIrecv()
OTF2_GlobalSnapReaderCallbacks_SetMpiIrecvCallback()
OTF2_SnapReaderCallbacks_SetMpiIrecvCallback()

Since

Version 1.2

C.143 MpiCollectiveBeginSnap

Indicates that this location started a collective operation but not all of the participating locations completed the
operation yet, including this location.

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

See also

MpiCollectiveBegin event
OTF2_SnapWriter_MpiCollectiveBegin()
OTF2_GlobalSnapReaderCallbacks_SetMpiCollectiveBeginCallback()
OTF2_SnapReaderCallbacks_SetMpiCollectiveBeginCallback()

Since

Version 1.2

106

C.144 MpiCollectiveEndSnap

C.144 MpiCollectiveEndSnap

Indicates that this location completed a collective operation locally but not all of the participating locations completed
the operation yet. The corresponding MpiCollectiveBeginSnap record is still in the snapshot though.

107

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

OTF2_←↩

Collective←↩

Op

collectiveOp Determines which collective operation it is.

OTF2_←↩

CommRef
communicator Communicator References a Comm definition and will be mapped to the global

definition if a mapping table of type OTF2_MAPPING_COMM is available.
uint32_t root MPI rank of root in communicator or OTF2_UNDEFINED_UINT32 if the

call has no root rank.
uint64_t sizeSent Size of the sent message.
uint64_t sizeReceived Size of the received message.

See also

MpiCollectiveEnd event
OTF2_SnapWriter_MpiCollectiveEnd()
OTF2_GlobalSnapReaderCallbacks_SetMpiCollectiveEndCallback()
OTF2_SnapReaderCallbacks_SetMpiCollectiveEndCallback()

Since

Version 1.2

C.145 OmpForkSnap

This record exists for each OmpFork event where the corresponding OmpJoin did not occurred before this snapshot.

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

108

C.146 OmpAcquireLockSnap

uint32_t numberOf←↩

Requested←↩

Threads

Requested size of the team.

See also

OmpFork event
OTF2_SnapWriter_OmpFork()
OTF2_GlobalSnapReaderCallbacks_SetOmpForkCallback()
OTF2_SnapReaderCallbacks_SetOmpForkCallback()

Since

Version 1.2

C.146 OmpAcquireLockSnap

This record exists for each OmpAcquireLock event where the corresponding OmpReleaseLock did not occurred
before this snapshot yet.

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

uint32_t lockID ID of the lock.
uint32_t acquisitionOrder A monotonically increasing number to determine the order of lock acquisitions

(with unsynchronized clocks this is otherwise not possible). Corresponding
acquire-release events have same number.

See also

OmpAcquireLock event
OTF2_SnapWriter_OmpAcquireLock()
OTF2_GlobalSnapReaderCallbacks_SetOmpAcquireLockCallback()
OTF2_SnapReaderCallbacks_SetOmpAcquireLockCallback()

Since

Version 1.2

C.147 OmpTaskCreateSnap

This record exists for each OmpTaskCreate event where the corresponding OmpTaskComplete event did not oc-
curred before this snapshot. Neither on this location nor on any other location in the current thread team.

109

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

uint64_t taskID Identifier of the newly created task instance.

See also

OmpTaskCreate event
OTF2_SnapWriter_OmpTaskCreate()
OTF2_GlobalSnapReaderCallbacks_SetOmpTaskCreateCallback()
OTF2_SnapReaderCallbacks_SetOmpTaskCreateCallback()

Since

Version 1.2

C.148 OmpTaskSwitchSnap

This record exists for each OmpTaskSwitch event where the corresponding OmpTaskComplete event did not oc-
curred before this snapshot. Neither on this location nor on any other location in the current thread team.

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

uint64_t taskID Identifier of the now active task instance.

See also

OmpTaskSwitch event
OTF2_SnapWriter_OmpTaskSwitch()
OTF2_GlobalSnapReaderCallbacks_SetOmpTaskSwitchCallback()
OTF2_SnapReaderCallbacks_SetOmpTaskSwitchCallback()

Since

Version 1.2

110

C.149 MetricSnap

C.149 MetricSnap

This record exists for each referenced metric class or metric instance event this location recorded metrics before
and provides the last known recorded metric values.

As an exception for metric classes where the metric mode denotes an OTF2_METRIC_VALUE_RELATIVE mode
the value indicates the accumulation of all previous metric values recorded.

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

OTF2_←↩

MetricRef
metric Could be a metric class or a metric instance. References a MetricClass, or a

MetricInstance definition and will be mapped to the global definition if a map-
ping table of type OTF2_MAPPING_METRIC is available.

uint8_t numberOf←↩

Metrics
Number of metrics with in the set.

OTF2_←↩

Type
typeIDs [

numberOf←↩

Metrics
]

List of metric types. These types must match that of the corresponding
MetricMember definitions.

OTF2_←↩

Metric←↩

Value

metricValues [
numberOf←↩

Metrics
]

List of metric values.

See also

Metric event
OTF2_SnapWriter_Metric()
OTF2_GlobalSnapReaderCallbacks_SetMetricCallback()
OTF2_SnapReaderCallbacks_SetMetricCallback()

Since

Version 1.2

C.150 ParameterStringSnap

This record must be included in the snapshot until the leave event for the enter event occurs which has the greatest
timestamp less or equal the timestamp of this record.

111

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

OTF2_←↩

Parameter←↩

Ref

parameter Parameter ID. References a Parameter definition and will be mapped to the
global definition if a mapping table of type OTF2_MAPPING_PARAMETER is
available.

OTF2_←↩

StringRef
string Value: Handle of a string definition References a String definition and will be

mapped to the global definition if a mapping table of type OTF2_MAPPING←↩

_STRING is available.

See also

ParameterString event
OTF2_SnapWriter_ParameterString()
OTF2_GlobalSnapReaderCallbacks_SetParameterStringCallback()
OTF2_SnapReaderCallbacks_SetParameterStringCallback()

Since

Version 1.2

C.151 ParameterIntSnap

This record must be included in the snapshot until the leave event for the enter event occurs which has the greatest
timestamp less or equal the timestamp of this record.

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

OTF2_←↩

Parameter←↩

Ref

parameter Parameter ID. References a Parameter definition and will be mapped to the
global definition if a mapping table of type OTF2_MAPPING_PARAMETER is
available.

112

C.152 ParameterUnsignedIntSnap

int64_t value Value of the recorded parameter.

See also

ParameterInt event
OTF2_SnapWriter_ParameterInt()
OTF2_GlobalSnapReaderCallbacks_SetParameterIntCallback()
OTF2_SnapReaderCallbacks_SetParameterIntCallback()

Since

Version 1.2

C.152 ParameterUnsignedIntSnap

This record must be included in the snapshot until the leave event for the enter event occurs which has the greatest
timestamp less or equal the timestamp of this record.

Attributes

OTF2_←↩

Location←↩

Ref

location The location of the snapshot.

OTF2_←↩

Time←↩

Stamp

timestamp The snapshot time of this record.

OTF2_←↩

Time←↩

Stamp

origEventTime The original time this event happened.

OTF2_←↩

Parameter←↩

Ref

parameter Parameter ID. References a Parameter definition and will be mapped to the
global definition if a mapping table of type OTF2_MAPPING_PARAMETER is
available.

uint64_t value Value of the recorded parameter.

See also

ParameterUnsignedInt event
OTF2_SnapWriter_ParameterUnsignedInt()
OTF2_GlobalSnapReaderCallbacks_SetParameterUnsignedIntCallback()
OTF2_SnapReaderCallbacks_SetParameterUnsignedIntCallback()

Since

Version 1.2

113

APPENDIX C. MODULE DOCUMENTATION

114

Index

List of all definition records, 28
List of all event records, 53
List of all marker records, 99
List of all snapshot records, 100

OTF2 callbacks, 19
OTF2 config tool, 21
OTF2 estimator tool, 25
OTF2 I/O recording, 26
OTF2 marker tool, 24
OTF2 print tool, 22
OTF2 records, 18
OTF2 snapshots tool, 23
OTF2 usage examples, 17

Usage of OTF2 tools, 20

	Contents
	1 Open Trace Format 2
	1.1 Introduction
	1.2 Get started

	Appendix A OTF2 INSTALL
	Appendix B Deprecated List
	Appendix C Module Documentation
	C.1 OTF2 usage examples
	C.2 OTF2 records
	C.2.1 Detailed Description

	C.3 OTF2 callbacks
	C.4 Usage of OTF2 tools
	C.4.1 Detailed Description

	C.5 OTF2 config tool
	C.6 OTF2 print tool
	C.7 OTF2 snapshots tool
	C.8 OTF2 marker tool
	C.9 OTF2 estimator tool
	C.10 OTF2 I/O recording
	C.11 List of all definition records
	C.12 ClockProperties
	C.13 Paradigm
	C.14 ParadigmProperty
	C.15 IoParadigm
	C.16 MappingTable
	C.17 ClockOffset
	C.18 String
	C.19 Attribute
	C.20 SystemTreeNode
	C.21 LocationGroup
	C.22 Location
	C.23 Region
	C.24 Callsite
	C.25 Callpath
	C.26 Group
	C.27 MetricMember
	C.28 Metric
	C.29 MetricClass
	C.30 MetricInstance
	C.31 Comm
	C.32 Parameter
	C.33 RmaWin
	C.34 MetricClassRecorder
	C.35 SystemTreeNodeProperty
	C.36 SystemTreeNodeDomain
	C.37 LocationGroupProperty
	C.38 LocationProperty
	C.39 CartDimension
	C.40 CartTopology
	C.41 CartCoordinate
	C.42 SourceCodeLocation
	C.43 CallingContext
	C.44 CallingContextProperty
	C.45 InterruptGenerator
	C.46 IoFileProperty
	C.47 IoFile
	C.48 IoRegularFile
	C.49 IoDirectory
	C.50 IoHandle
	C.51 IoPreCreatedHandleState
	C.52 CallpathParameter
	C.53 List of all event records
	C.54 BufferFlush
	C.55 MeasurementOnOff
	C.56 Enter
	C.57 Leave
	C.58 MpiSend
	C.59 MpiIsend
	C.60 MpiIsendComplete
	C.61 MpiIrecvRequest
	C.62 MpiRecv
	C.63 MpiIrecv
	C.64 MpiRequestTest
	C.65 MpiRequestCancelled
	C.66 MpiCollectiveBegin
	C.67 MpiCollectiveEnd
	C.68 OmpFork
	C.69 OmpJoin
	C.70 OmpAcquireLock
	C.71 OmpReleaseLock
	C.72 OmpTaskCreate
	C.73 OmpTaskSwitch
	C.74 OmpTaskComplete
	C.75 Metric
	C.76 ParameterString
	C.77 ParameterInt
	C.78 ParameterUnsignedInt
	C.79 RmaWinCreate
	C.80 RmaWinDestroy
	C.81 RmaCollectiveBegin
	C.82 RmaCollectiveEnd
	C.83 RmaGroupSync
	C.84 RmaRequestLock
	C.85 RmaAcquireLock
	C.86 RmaTryLock
	C.87 RmaReleaseLock
	C.88 RmaSync
	C.89 RmaWaitChange
	C.90 RmaPut
	C.91 RmaGet
	C.92 RmaAtomic
	C.93 RmaOpCompleteBlocking
	C.94 RmaOpCompleteNonBlocking
	C.95 RmaOpTest
	C.96 RmaOpCompleteRemote
	C.97 ThreadFork
	C.98 ThreadJoin
	C.99 ThreadTeamBegin
	C.100 ThreadTeamEnd
	C.101 ThreadAcquireLock
	C.102 ThreadReleaseLock
	C.103 ThreadTaskCreate
	C.104 ThreadTaskSwitch
	C.105 ThreadTaskComplete
	C.106 ThreadCreate
	C.107 ThreadBegin
	C.108 ThreadWait
	C.109 ThreadEnd
	C.110 CallingContextEnter
	C.111 CallingContextLeave
	C.112 CallingContextSample
	C.113 IoCreateHandle
	C.114 IoDestroyHandle
	C.115 IoDuplicateHandle
	C.116 IoSeek
	C.117 IoChangeStatusFlags
	C.118 IoDeleteFile
	C.119 IoOperationBegin
	C.120 IoOperationTest
	C.121 IoOperationIssued
	C.122 IoOperationComplete
	C.123 IoOperationCancelled
	C.124 IoAcquireLock
	C.125 IoReleaseLock
	C.126 IoTryLock
	C.127 ProgramBegin
	C.128 ProgramEnd
	C.129 List of all marker records
	C.130 DefMarker
	C.131 Marker
	C.132 List of all snapshot records
	C.133 SnapshotStart
	C.134 SnapshotEnd
	C.135 MeasurementOnOffSnap
	C.136 EnterSnap
	C.137 MpiSendSnap
	C.138 MpiIsendSnap
	C.139 MpiIsendCompleteSnap
	C.140 MpiRecvSnap
	C.141 MpiIrecvRequestSnap
	C.142 MpiIrecvSnap
	C.143 MpiCollectiveBeginSnap
	C.144 MpiCollectiveEndSnap
	C.145 OmpForkSnap
	C.146 OmpAcquireLockSnap
	C.147 OmpTaskCreateSnap
	C.148 OmpTaskSwitchSnap
	C.149 MetricSnap
	C.150 ParameterStringSnap
	C.151 ParameterIntSnap
	C.152 ParameterUnsignedIntSnap

	Appendix Index

