
CubeW 4.6 Library Usage
Intoduction in Cube tool development guide

March 2021
The Scalasca Development Team
scalasca@fz-juelich.de

Attention

The Cube Writer Library Developer Guide is currently being rewritten and still
incomplete. However, it should already contain enough information to get
you started and avoid the most common pitfalls.

ii

Contents

1 Makefile for provided examples 3
1.1 Quick info about makefile. 3
1.2 Commented source . 3

2 Examples of using CUBE c-writer library 5
2.1 Commented source . 5

Bibliography 11

iii

Contents

Copyright © 1998–2017 Forschungszentrum Jülich GmbH, Germany

Copyright © 2009–2015 German Research School for Simulation Sciences GmbH,
Jülich/Aachen, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the names of Forschungszentrum Jülich GmbH or German Research School
for Simulation Sciences GmbH, Jülich/Aachen, nor the names of their contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1

1 Makefile for provided examples

1.1 Quick info about makefile.

Here we provide a small example of a makefile, which is used to compile and build examples
delivered with CUBE. Similar makefiles can be used by developers to compile and build
own CUBE tools.

1.2 Commented source

First we specify the installation path of CUBE and its "cube-config" script. This script
delivers correct flags for compiling and linking, paths to the CUBE tools and GUI. (besides
of another useful technical information)

CUBE_DIR = /path/CubeInstall
CUBE_CONFIG = $(CUBE_DIR)/bin/cube-config

Additionally we specify CPPFLAGS and LDFLAGS to compile and link examples.

CPPFLAGS = $(shell $(CUBE_CONFIG) --cube-cxxflags)
CFLAGS = $(shell $(CUBE_CONFIG) --cubew-cxxflags)
CLDFLAGS = $(shell $(CUBE_CONFIG) --cubew-ldflags)
CPPLDFLAGS = $(shell $(CUBE_CONFIG) --cube-ldflags)

Here a compiler is selected to compile and build the example.

GNU COMPILER
CXX = g++
CC = gcc -std=c99
MPICXX= mpicxx

We define explicit suffixes for an executable file, created from C source, from c++ source
and an MPI executable. If one develops a tool, which is using MPI, it is useful (sometimes)
to define a special suffix for automatic compilation.

.SUFFIXES: .c .o .cpp .c.exe .cpp.exe .c.o .cpp.o .mpi.o .mpi.cpp

.PHONY: all clean

Object files of examples and their targets

Object files
OBJS = cube_example.cpp.o \

cubew_example.c.o

TARGET = cube_example.cpp.exe \
cubew_example.c.exe

3

1 Makefile for provided examples

Automatic rule for the compilation of every single C++ source into .o file and for building
targets.

%.cpp.o : %.cpp
$(CXX) -c $< -o $@ $(CPPFLAGS)

%.cpp.exe : %.cpp.o
$(CXX) $< -o $@ $(CPPLDFLAGS)

Automatic rule for the compilation of every single C++ with MPI source into .o file and for
building targets.

%.mpi.o : %.mpi.cpp
$(MPICXX) -c $< -o $@ $(CPPFLAGS) $(CFLAGS)

%.mpi.exe : %.mpi.o
$(MPICXX) $< -o $@ $(CLDFLAGS)

Automatic rule for the compilation of every single C source into .o file and for building
targets.

%.c.o : %.c
$(CC) -c $< -o $@ $(CFLAGS)

%.c.exe : %.c.o
$(CC) $< -o $@ $(CLDFLAGS)

#--
Rules
#--

all: $(TARGET)

4

2 Examples of using CUBE c-writer
library

Present example shows in several short steps the main idea of creating a cube file using C
writer library.

In this example we do not show the optimization, which is needed to prevent unnecessary
seeks while writing.

2.1 Commented source

Include standard c header

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>

Include CUBE headers.

Notice, that CUBE4 c-writer headers got an prefix cubew_XXX.h

#include "cubew_cube.h"

Start main and define a name of the cube file. Extension ".cubex" will be append automati-
cally.

int main(int argc, char* argv[])
{

char cubefile[12] = "simple-cube";

Create the structure of the cube. CUBE_MASTER defines, that in parallel MPI environment
this cube (usually rank 0) writes all parts of the cube (anchor, indexes and data). The last
argument is ignored in current version of CUBE c-writer.

cube_t* cube=cube_create("example", CUBE_MASTER, CUBE_FALSE);
if (!cube) {

fprintf(stderr,"cube_create failed!\n");
exit(1);

}

Specify general properties of cube object.

5

2 Examples of using CUBE c-writer library

cube_def_mirror(cube, "http://icl.cs.utk.edu/software/kojak/");
cube_def_mirror(cube, "http://www.fz-juelich.de/jsc/kojak/");
cube_def_attr(cube, "description", "a simple example");
cube_def_attr(cube, "experiment time", "November 1st, 2004");

cube_set_statistic_name(cube, "mystat");

Now we start to define the dimensions of the cube.

First we define metric dimension. Notice, that metrics build a tree and parents have to be
declared before their children.

Every metric can be of two kinds: inclusive or exclusive.

Every metric needs a display name, an unique name, type of values (INTEGER, DOUBLE,
MAXDOUBLE, MINDOUBLE, others), units of measurement, value (usually empty string),
URL, where one can find the documentation about this metric, description and its parent in
the metric tree.

The cube returns a pointer on structure cube_metric, which has to be used for saving or
reading values from the cube.

cube_metric *met0, *met1, *met2;
met0 = cube_def_met(cube, "Time", "Uniq_name1", "FLOAT", "sec", "",

"@mirror@patterns-2.1.html#execution",
"root node", NULL, CUBE_METRIC_EXCLUSIVE);

met1 = cube_def_met(cube, "User time", "Uniq_name2", "FLOAT", "sec", "",
"http://www.cs.utk.edu/usr.html",
"2nd level", met0, CUBE_METRIC_INCLUSIVE);

met2 = cube_def_met(cube, "System time", "Uniq_name3", "INTEGER", "sec", "",
"http://www.cs.utk.edu/sys.html",
"2nd level", met0, CUBE_METRIC_EXCLUSIVE);

Then we define the calltree dimension. This dimension gets defined in a two-step way:

1. One defines a list of regions in the instrumented source code;

2. One builds a call tree with the regions defined in the previous step.

First one defines the regions.

Every region has a name, start and end line, URL with the documentation of the region,
description and source file (module). Regions build a list, therefore no "parent-child"
relation is given.

The cube returns a pointer on structure cube_region, which can be used later for the
calculations, visualization or access to the data.

char* mod = "/ICL/CUBE/example.c";
cube_region *regn0, *regn1, *regn2;
regn0 = cube_def_region(cube, "main", 21, 100, "", "1st level", mod);
regn1 = cube_def_region(cube, "<<init>>foo", 1, 10, "", "2nd level", mod);
regn2 = cube_def_region(cube, "<<loop>>bar", 11, 20, "", "2nd level", mod);

Then one defines an actual dimension, the call tree dimension.

Call tree consists of so called CNODEs. Cnode stands for "call path".

Every cnode gets as a parameter a region, source file (module), its id and parent cnode
(caller).

6

2.1 Commented source

Parent cnodes have to be defined before their children. Region might be entered from
different places in the program, therefore different cnodes might have same region as a
parameter.

cube_cnode *cnode0, *cnode1, *cnode2;
cnode0 = cube_def_cnode_cs(cube, regn0, mod, 21, NULL);
cnode1 = cube_def_cnode_cs(cube, regn1, mod, 60, cnode0);
cnode2 = cube_def_cnode_cs(cube, regn2, mod, 80, cnode0);

CUBE4 supports two kind of parameters of a cnode: numeric and string parameter. Every
cnode can carry any number of both of them.

cube_cnode_add_numeric_parameter(cnode0, "Phase", 1);
cube_cnode_add_numeric_parameter(cnode0, "Phase", 2);
cube_cnode_add_string_parameter(cnode0, "Iteration", "Initialization");
cube_cnode_add_string_parameter(cnode2, "Etappe", "Finish");

Thelast dimension is the system tree dimension. Currently CUBE defines the system
dimension with the fixed hierarchy: MACHINE → NODES → PROCESSES → THREADS

It leads to the fixed sequence of calls in the system dimension definition:

1. First one creates a root for the system dimension : cube_machine. Machine has a
name and description.

2. Machine consists of cube_nodes. Every cube_node has a name and a cube_machine
as a parent.

3. On every cube_node run several cube_processes (as many cores are available).
cube_process has a name, MPI rank and cube_node as a parent.

4. Every cube_process spawns several (one or more) cube_threads (OMP, Pthreads, Java
Threads). cube_thread has a name, its rank and cube_process as a parent.

The cube returns a pointer on cube_machine, cube_node, cube_process or cube_thread,
which has to be used later to define further level in the system tree or to access the data in
the cube.

cube_machine* mach = cube_def_mach(cube, "MSC<<juelich>>", "");
cube_node* node = cube_def_node(cube, "Athena<<juropa>>", mach);
cube_process* proc0 = cube_def_proc(cube, "Process 0<<master>>", 0, node);
cube_process* proc1 = cube_def_proc(cube, "Process 1<<worker>>", 1, node);
cube_thread* thrd0 = cube_def_thrd(cube, "Thread 0<<iterator>>", 0, proc0);
cube_thread* thrd1 = cube_def_thrd(cube, "Thread 1<<solver>>", 1, proc1);

CUBE can carry a set of so called "topologies": mappings THREAD → (x, y, z, ...)

Then the GUI is used to visualize every value (cube_metric, cube_cnode, cube_thread) for
selected metric and cnode as a 1D, 2D or 3D set of points with the different colors.

First one specifies a number of dimensions (any number is supported), a vector with the
sizes in every dimension and its periodicity and creates a structure of type cube_cartesian

long dimv0[NDIMS] = { 5, 5 };
int periodv0[NDIMS] = { 1, 0 };
cube_cartesian* cart0 = cube_def_cart(cube, NDIMS, dimv0, periodv0);
cube_cart_set_name(cart0, "Application Topology 1");

The coordinates are defined like a vector and create a mapping.

7

2 Examples of using CUBE c-writer library

long coordv[NDIMS] = { 0, 0};
cube_def_coords(cube, cart0, thrd1, coordv);

long dimv1[NDIMS] = { 3, 3 };
int periodv1[NDIMS] = { 1, 0 };
cube_cartesian* cart1 = cube_def_cart(cube, NDIMS, dimv1, periodv1);
cube_cart_set_name(cart1, "MPI Topology 3");

long coordv0[NDIMS] = { 0, 1 };
long coordv1[NDIMS] = { 1, 0 };
cube_def_coords(cube, cart1, thrd0, coordv0);
cube_def_coords(cube, cart1, thrd1, coordv1);

The same way one can create any number of topologies. They are shown in the GUI.

long dimv2[4] = { 3, 3, 3, 3 };
int periodv2[4] = { 1, 0, 0, 0 };
cube_cartesian* cart2 = cube_def_cart(cube, 4, dimv2, periodv2);

long coordv20[4] = { 0, 1, 0, 0 };
long coordv21[4] = { 1, 0, 0 ,0 };
cube_def_coords(cube, cart2, thrd0, coordv20);
cube_def_coords(cube, cart2, thrd1, coordv21);
cube_cart_set_name(cart2,"Second");

long dimv3[14] = { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 };
int periodv3[14] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
cube_cartesian* cart3 = cube_def_cart(cube, 14, dimv3, periodv3);
long coordv32[14] = { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 };
long coordv33[14] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
cube_def_coords(cube, cart3, thrd0, coordv32);
cube_def_coords(cube, cart3, thrd1, coordv33);
cube_cart_set_name(cart3,"Third");

Once the dimensions are defined, one fills the cube object with the data. Definition of
topologies can be done after filling the cube.

Every data value is specified by three "coordinates": (cube_metric, cube_cnode,
cube_thread)

Note, that cube_machine, cube_node and cube_process are not a "coordinate". They are
used only to build up the physical construction of the machine.

Actual writing is done metric-wise and row-wise. First all values of one metric written, then
the next metric and so on. No mixing of metrics in this sequence is allowed.

Cube writes data row-wise. It means, for a given cnode, one has to provide an array of
values, written in the order of threads in the system dimension.

double sev1[2];

sev1[0]=123.4;
sev1[1]=567.9;
cube_write_sev_row(cube, met0, cnode2, sev1);

sev1[0]=1123.4;
sev1[1]=2567.9;
cube_write_sev_row(cube, met0, cnode1, sev1);

sev1[0]=-1123.4;
sev1[1]=3567.9;
cube_write_sev_row(cube, met0, cnode0, sev1);

sev1[0]=-123.4;
sev1[1]=-567.9;

8

2.1 Commented source

cube_write_sev_row(cube, met1, cnode0, sev1);

uint64_t sev2[2];
sev2[0]=23;
sev2[1]=26;
cube_write_sev_row(cube, met2, cnode2, sev2);

printf("Test file %s complete.\n", cubefile);

cube_free(cube);
return 0;

}

9

www.scalasca.org

	Makefile for provided examples
	Quick info about makefile.
	Commented source

	Examples of using CUBE c-writer library
	Commented source

	Bibliography

